

Results from the ICARE-NG detectors onboard SAC-D, JASON 2 and JASON 3 satellites

ONERA - D. Boscher, S. Bourdarie, D. Falguère, D. Lazaro, V. Maget, A. Sicard

CNES - R. Ecoffet, E. Lorfèvre, G. Rolland

EREMS - T. Baldran, P. Bourdoux

- IPODE database
- Introduction to the ICARE instruments family
- ICARE monitor (SAC-C results)
- ICARE-NG monitor (SAC-D, JASON2 and 3 results)
- Conclusions

IPODE (Ionising Particle Onera DatabasE)

- more than 100 spacecraft/detector
- electron, proton and alpha particles
- Main orbits covered
- More than 3 solar cycles
- ~1 keV to few MeV for electrons
- ~1keV to few 100 MeV for protons
- Permanent update

- Operational support from CNES
- Multiannual CNES R&D contracts

Introduction to the ICARE monitors family

In the context of Space Weather and/or Climatology:

Only few "operational" measurements are available (i.e. long term, same detector):

- NOAA-POES satellites
- GPS satellites
- GOES and LANL-GEO satellites

LEO are good opportunities to obtain a global view of the outer belt (average, extreme events), and to seek the conditions of creation of proton second belts

→ Need for long term measurements

Opportunity with CNES:

- Develop a radiation monitor for the SAC-C mission (CONAE)
- Devoted to:
 - the observation of high energy electron spectrum
 - The observation of proton second belts

Not a science class instrument but a radiation monitor easy to embark

The ICARE detector family / satellites (evolution)

On-board missions:

- MIR (SPICA) •
- **SAC-C** (20 nov. 2000, 705km, 98°) •

Dimensions: 116 x 202 x 90 mm Weight: 2 kg Power: 2.5 W (Peak 2.8W)

3 heads of detection:

- Electrons
- Protons ٠
- Alpha ions -•

200 keV – 3.5 MeV

- 10 30 MeV
- about 70 MeV

http://craterre.onecert.fr/radiation_monitors/ICARE.html

ICARE onboard SAC-C

Electron results

Lesson learned

- Continuous spectrum from 200keV to 4MeV (possibility to obtain good averages-worst cases)
- Magnetic storms of July and Nov 2004
- Nearly one solar cycle (from Dec 2000 to March 2012)

Limitations

- Proton contamination
- One diode out of order after 2.5 years (6mm) → spectrum limited to 200keV-1.6MeV
- 64s time resolution

ICARE onboard SAC-C

Lesson learned:

The 10 MeV proton channel clearly observes creation as well as disappearance of second belt. *Even third belt discovery*

December 2001

Limitations:

- One diode out of order after 2.5 years (6mm)
- Proton spectrum limited

Conclusions

References:

Falguère, D., D. Boscher, T. Nuns, S. Duzellier, S. Bourdarie, R. Ecoffet, S. Barde, J. Cueto, C. Alonzo, C. Hoffman, *In-Flight observations of the radiation environment and its effects on devices in the SAC-C polar orbit*, IEEE Trans. Nuc. Sci., 49(6): 2782-2787, December 2002.

Benck, S., L. Mazzino, M. Cyamukungu, J. Cabrera, V. Pierrard, *Low altitude energetic electron lifetimes after enhanced magnetic activity as deduced from SAC-C and DEMETER data*, Ann. Geophys., vol. 28, pp. 849-859, March 2010.

Maget, V., S. Bourdarie, and G. Rolland, *Characterizing Solar Energetic Particles Access to any Earth-Space Location*, IEEE Transactions on Nuclear Science, 60(4), 2404–2410, doi:10.1109/TNS.2012.2233756, 2013.

\rightarrow Improvements consecutively conducted on the ICARE monitor:

- *Electrons* : same 200keV-4MeV spectrum but without 6mm thick diode
- *Protons*: 10MeV but also other channels to observe the spectrum in second belts
- 16s time resolution

The ICARE detector family / satellites (evolution)

On-board missions:

- JASON 2 (20 June 2008, 1330 km, 66°)
- SAC-D (10 June 2011 7 June 2015, 715 km, 98°)
- **JASON 3** (17 January 2016, 1330 km, 66°)

Dimensions: 197 x 118 x 96 mm Weight: 2.4 kg Power: 4 W (Peak 6 W)

3 heads of detection but 5 configurations:

- Electrons: 200 keV 3.5 MeV
- **Protons**: 10 200 MeV

Electrons results

ICARE-NG was switched on 22 June 2008

Lesson learned:

- Good measurements along this new orbit
- Less contamination
- Spectrum 1.6-3.6MeV
- Improved data unfolding using SVDbased deconvolution (down to 825 keV)

Limitations:

Monitor inside the satellite \rightarrow low energy electrons are not observable

Protons results

Lesson learned:

- Opportunity to observe the SAA at 1330km altitude
- Study of the solar cycle influence at this -30 altitude -60
- Study of the influence of the satellite shielding and the anisotropy
- Spectrum: 67 292 MeV
- Improved data unfolding using SVDbased deconvolution (40 – 500 MeV)

Limitations:

Monitor inside the satellite \rightarrow difficult to observe second belts

Protons 88MeV August-November 2008

Focus on the data analysis

Integration "on" JASON 2

Fish-eye view of the sectoring analysis of the B head: equivalent AI thickness (mm)

"Hand-made" unfolding:

- 10 electron channels (1.6 MeV to 3.6 MeV)
- 42 proton channels (63 MeV to 292 MeV)

Refined modeling of ICARE-NG sensitivity

Incident energy

GEANT 4 calculations of the response matrix for all head's configurations (30 000 000 particles launched)

PS

Improvements using global deconvolution using SVD inversion:

cnes

Conclusions

References

Boscher, D., S.A. Bourdarie, D. Falguere, D. Lazaro, P. Bourdoux, T. Baldran, G. Rolland, E. Lorfevre, R. Ecoffet, *In Flight Measurements of Radiation Environment on Board the French Satellite JASON-2*, IEEE Trans. Nuc. Sci., vol.58-3, pp. 916-922, 2011, doi: 10.1109/TNS.2011.2106513, 2011.

Maget V., S. Bourdarie, D. Lazaro, D. Boscher, G. Rolland, R. Ecoffet, and E. Lorfevre, *Unfolding JASON-2/ICARE-NG High-Energy Particles Measurements Using a Singular Value Decomposition Approach*, IEEE Transactions on Nuclear Science, vol. Early Access Online, 2014.

Boscher, D., A. Sicard-Piet, D. Lazaro, T. Cayton, and G. Rolland, *A New Proton Model for Low Altitude High Energy Specification*, IEEE Transactions on Nuclear Science, 61(6), 3401–3407, doi:10.1109/TNS.2014.2365214, 2014.

ICARE-NG onboard SAC - D

Electrons results

Reminder:

- SSO satellite 715km altitude
- Launched 10 June 2011
- ICARE-NG switched on 30 Aug. 2011

Lesson learned:

- 250keV-3.3MeV, but careful with proton contamination
- Good comparison with SAC-C

Limitations:

Early end of life (2015) due to satellite power system failure

ICARE onboard SAC - D

Protons results

Lesson learned:

- Spectrum 12.8 MeV 190 MeV
- Extended to a few MeV up to 500 MeV using SVD-based unfolding
- Good comparison with SAC-C

Limitations:

Early end of life (2015) due to satellite power system failure

ICARE-NG onboard SAC - D

10

10⁻¹

10⁻²

10

10⁻¹

10⁻²

Comparison with SAC - C

Protons~10MeV Feb-Apr 2012

Flux in MeV-1 cm-2 s-1 sr-1

17

Conclusion

Reference

Boscher, D., T. Cayton, V. Maget, S. Bourdarie, D. Lazaro, T. Baldran, P. Bourdoux, E. Lorfèvre, G. Rolland, R. Ecoffet, *In flight measurements of radiation environment on board the Argentinean satellite SAC-D*, submitted to IEEE Trans. Nucl. Sci., 2014

First year results

Good practice developed Near real-time processing of the ICARE / ICARE-NG data

- Library (PRBEM COSPAR)
- ** Panel on radiation Belt Environment Modelling (COSPAR)

General conclusions

- *Global knowledge* of the whole configuration / implantation of the detector on board its host (3D shielding by the satellite, response function of each head,...)
- More than one solar cycle of ICARE / ICARE-NG measurements
- Overlapping of measurements
- Even used for science purposes
- Of prime importance for specification models: OPAL, GREEN models

Satellite name	Launch date	Power on date	Power off date	Sat. end of life
SAC-C	21/11/2000	09/12/2000	30/04/2012	15/08/2013
SAC-D	10/06/2011	30/08/2011	08/06/2015	08/06/2015
JASON 2	20/06/2008	22/06/2008	31/08/2016	
JASON 3	17/01/2016	19/01/2016		

