

Impact of the consideration of the LEO trapped proton anisotropy on dose calculation at component level

P. Pourrouquet, <u>A. Varotsou</u> and R. Fonta, TRAD D. Boscher, ONERA/DESP R. Ecoffet, CNES

ESA-CNES RFP Days – March 7, 2017

TRAD, Tests & Radiations

Context

- Trapped proton fluxes at Low Earth Orbit (LEO) are anisotropic due to the interaction with the Earth's atmosphere. A steep pitch-angle distribution is observed related to the atmospheric loss cone.
- At LEO the dose is deposited mainly by trapped protons
- The proton anisotropy is not currently taken into account in the radiation hardness process at industrial level. This would make the process long and complicated.
- Along the orbit the satellite changes orientation w.r.t. to the magnetic field => probable attenuation of the anisotropy effect

 Quantify the impact of taking into account the trapped proton anisotropy on the deposited dose calculation, by considering a realistic satellite 3D radiation model

Description of activities

- Anisotropic flux calculation
- Satellite attitude definition
- Anisotropic flux inside the satellite
- TID calculation at component level
- Results
- Conclusions

- 1. Definition of anisotropic flux w.r.t. the magnetic field
- 2. Definition of the satellite orientation w.r.t. the magnetic field
- 3. Use the above to define the anisotropic flux at component level inside the satellite
- 4. Calculation of deposited dose using Sector Analysis for both isotropic and anisotropic fluxes
- 5. Comparison between results

Badhwar & Konradi [1990] model

$$j = K\xi e^{-\beta\xi} \quad \text{where} \quad \xi = \frac{\sin\alpha}{\sqrt{B}} - \frac{\sin\alpha_L}{\sqrt{B}}$$
$$J = 4\pi \int_{\alpha_L}^{\pi/2} j\sin\alpha d\alpha = 4\pi K \int_{\alpha_L}^{\pi/2} \xi e^{-\beta\xi} \sin\alpha d\alpha$$

Using values from Siegl [2009]

$$\sin \alpha_L = \sqrt{\frac{B}{Bo}} \sin \left(\frac{\pi}{180} \frac{1}{-0.032392 + 0.039836L} \right)$$
$$\beta[\sqrt{G}] = \frac{1}{0.13164 - 8.8674Ln(L)}$$

Remarks:

- Anisotropy different at each point of the orbit
- Pitch angle α_L , > 90° for high L values: orbit points are excluded
- Anisotropy at a specific point of the orbit is independent of the energy

2- Satellite attitude definition

Use of quaternions

Missing/bad data for the first part of the studied mission (SACD)

Use of SACD mission characteristics

- Direction Z_{sat} : oriented towards the center of the Earth
- Direction X_{sat} : oriented following the satellite velocity vector
- Direction Y_{sat} : from orthogonal satellite coordinate system

- Use of all information described before
- Development of a special algorithm in OMERE to estimate the satellite orientation w.r.t. to the magnetic field at each point of the mission
 Velocity vector : Direction X_{Sat}

Magnetic field

R&7

4- TID calculation at component level

- Sum of flux for each direction inside the satellite for the whole mission
- Calculation (Sector Analysis) of deposited dose by isotropic and anisotropic flux, considering the shielding brought by a satellite platform, an equipment (ICARE-NG) and component packages

Total anisotropic dose calculation	
Sector file FASTRAD sector file: \\192.168.10.201\Calcul\ETUDES\CLIENTS\CNES\R&T anisot	
Orbit definition Mission file: \CLIENTS\CNES\R&T anisotropie\Etude\Carmen\mission.cen	
Output Output file: \\192.168.10.201\Calcul\ETUDES\CLIENTS\CNES\R&T anisot	
OK Calculations Cancel	
ESA-CNES RFP Days – March 7, 2017	

5- Results

- Estimated dose on the outside of the satellite for 2 LEO missions – validation of the calculation algorithm
 - Isotropic flux gives identical result to anisotropic flux

Mission	Flux Isotrope Dose totale Protons piégés	Flux Anisotrope Dose totale Protons piégés	Différence Anisotrope/Isotrope
	rad	rad	%
SAC-D	1.61E+05	1.61E+05	0
Jason 2	3.96E+06	3.96E+06	0

5- Results

• Dose in 4 simple particle detector models in Aluminum:

- "A" cylinder: lateral thickness 4mm, top thickness 500µm and bottom thickness 5mm
- "C" cylinder: lateral thickness 4mm, top thickness 4mm and bottom thickness 5mm
- "2mm" cylinder: all thicknesses 2mm
- "20mm" cylinder: all thicknesses 20mm

Mission Cylinder	Isotropic Flux Total Dose Trapped protons	Anisotropic Flux Total Dose Trapped protons	Difference Anisotropic/Isotropic	
		rad	rad	%
SAC-D	A	1.27E+03	1.29E+03	1.6%
	С	8.88E+02	8.76E+02	-1.3%
	2mm	1.04E+03	1.03E+03	-1.0%
	20mm	4.38E+02	4.26E+02	-2.8%

Dose inside the SACD platform for the whole mission.

 Study on multiple components of the CARMEN experience inside the ICARE-NG equipment

Composant	Flux IsotropeFlux AnisotropeDose totaleDose totaleProtons piégésProtons piégés		Différence Anisotrope/Isotrope	
	rad	rad	%	
RADFET1	456	433	-5.1	
RADFET2	458	437	-4.7	
Z52 - MAX892	528	520	-1.5	
Z75 - MAX892	525	503	-4.2	
IRFC360 - T8	365	353	-3.0	

Comparison with in-flight measurements

Composant	Mesure en vol Dose totale	Flux Isotrope Dose totale	Flux Anisotrope Dose totale	Différence Anisotrope/Mesure
	rad	rad	rad	%
RADFET1	555	561	538	-3.1
RADFET2	555	563	542	-2.4

- Consideration of the trapped proton anisotropy does not have an impact on multiple components studied
 - Using the Badhwar & Konradi [1990] model
 - Using a realistic satellite and equipment radiation model
 - Considering the whole SACD mission
- Possible perspectives :
 - Study the impact on the mission's dose rate. For that, the satellite attitude needs to be known during the mission (quaternions or worst-case).

