

R&T PROTON DIRECT IONIZATION

Assessment of the Direct Ionization Contribution to the Proton SEU Rate

N. Sukhaseum, J. Guillermin, N. Chatry, F. Bezerra and R. Ecoffet

07/03/2017 – ESA/CNES Presentation Days

TRAD, Tests & Radiations

- Electronic device integration scale decrease → SEU sensitivity increase
- Technology nodes 90nm and lower (65nm, 45nm, 28nm...)
 - Necessary charge to upset a device low enough to be sensitive to proton direct ionization

Proton caused SEU

- Recoil atom
 - Indirect event due to the charge generated by a secondary ion
- Direct ionization
 - Charge generated by the incident proton leads to an event

The aim of this study is to perform experimental testing of proton direct ionization sensitivity and to propose a rate estimation method

Maximum LET at end of path

 Significant deposited charge over a small distance in the last silicon microns

Proton direct ionization may occur when

- Maximum generated charge in the device active area
 - Incident proton stops in the active area
- Device sensitive enough compared to the generated charge
 - Low SEU critical charge

2011 – State-of-the-art establishment

- Proton direct ionization methodology proposition including
 - Experimental characterization
 - Rate computation

2012/2013 – Experimental phase preparation

- Selection and procurement of potentially sensitive devices
 - Commercially available SRAM memory cell below 65 nm tech. node
- Identification of an adapted test facility
 - Proton beam at low flux under vacuum with in-situ bias and tilting possibility

2014 – 45nm FPGA experimental characterization

- Proposed test and calculation methodology validation
 - Direct ionization test data
 - Contribution to the SEU rate calculation
- Results published at NSREC
 - NSREC 2014 Proceedings PB-5

2015/2016 – Proposed methodology application to existing test data

- Proton direct ionization OMERE module prototype development
- Proton direct ionization contribution to the rate estimation
- Results submitted at Radecs 2016

Experimental Characterization

Test-bed developped by TRAD for low energy proton beam experiments

- SEU count
- Stuck bit detection
- SEFI management
- SEL protection
- Irradiations performed at CNA (Centro Nacional de Aceleradores, Sevilla, Spain)
 - 3 MV Tandem accelerator
 - Incident proton energy 750keV to 6MeV
 - Tilted experiments 0° to 60°
 - Effective penetration depth variation

07/03/2017 – ESA/CNES Presentation Days

CNA proton facility

displayed at 1.27MeV

Cross section increase below 1.5MeV

- Direct ionization sensitivity of the tested devices
- Irradiations at different energies and tilt angles
 - Tilted irradiations are plotted on the graph at the <u>energy</u> <u>corresponding to the same effective range</u> in silicon

The experimental data is compiled in order to calculate a rate

Reconstructed cross section curve at fixed energy as a function of the tilt angle

Based on the penetration depth value ٠

Reconstructed cross section $\sigma(\theta)$ at 1.5 MeV

7

At 1.5 MeV, cross

section values at

sensitivity

- Between 1,25 and 1,5 MeV, the relative proportion of direct events decreases with respect to the indirect events increase
 - There is an energy range in which the direct and indirect ionization regimes • overlap
- In order to focus on direct ionization, the test data is completed by a calculation hypothesis
 - The two sensitivity threshold angles appearing on the graph are used to define the direct ionization sensitive layer

- Sensitive layer <u>depth</u> and <u>thickness</u> calculated with respect to the threshold angles
 - 15° and 66° in the example of DUT A at 1.5MeV
- It is assumed that an incident proton has to stop in the sensitive layer in order to be likely to create an event by direct ionization
 - Effective flux φ(θ) to take into account at each angle
 - φ(θ) is the proportion of protons from the environment spectrum with a path ending in the sensitive layer
- At a tilt θ, over all the incident protons stopping in the sensitive layer, the ratio of particles leading to an event is given by the measured cross section σ(θ)
 - Simplification : $\sigma(\theta) = \sigma_{max}$

Sensitive layer calculation

Calculation methodology

A worst-case hypothesis is considered for the calculation

Direct Ionization Rate Calculation

Development of a direct ionization rate calculation module in OMERE 5.0

Tests & radiations

Specific format for input test data

Energy – Angle – Cross-section

SEE Direct Ionization	×
Input File C:\OMERE\experimentalsDatas.dat	
Environment data - Heavy - Protons: - Sector file:	
Output File C:\OMERE\rateSEEDirectIonization.dat	
V Nun the current parameters	💥 Cancel

Documentary research for available proton test data

- [RD1] Low Energy Proton Single-Event-Upset Test Results on 65 nm SOI SRAM, David F. Heidel, IEEE TNS VOL. 55, NO. 6, DECEMBER 2008
- [RD2] Heavy Ion, High-Energy, and Low-Energy Proton SEE Sensitivity of 90-nm RHBD SRAMs, E. H. Cannon, IEEE TNS VOL. 57, NO. 6, DECEMBER 2010
- [RD3] The contribution of low-energy protons to the total on-orbit SEU rate, N. A. Dodds, IEEE TNS DECEMBER 2015
- [RD4] Single-Event Upsets and Multiple-Bit Upsets on a 45 nm SOI SRAM, David F. Heidel, IEEE TNS VOL. 56, NO. 6, DECEMBER 2009
- [RD5] Low-Energy Proton Testing Using the Boeing Radiation Effects Laboratory 2.2 MeV Dynamitron, Jerry Wert, February 2012

Rate calculation for a typical orbit

LEO 800 km (1 g.cm⁻²)

Direct ionization event rate (per dev. or per bit, per day)

Peference	Reference Experiment Tech. node	Tech.	Cross-	Direct ionization	
Kelefelice		node	section	Rate	Rate /bit
[RD1]_data0_1et2MeV	SEU SRAM	65 nm	/Mbit	9.43E-01	9.43E-07
[RD1]_data1_1et2MeV	SEU SRAM	65 nm	/Mbit	9.48E-01	9.48E-07
[RD2]_CellB_0.9V	SEU hard. SRAM	90 nm	/bit	4.51E-09	4.51E-09
[RD2]_CellB_1.0V	SEU hard. SRAM	90 nm	/bit	1.91E-09	1.91E-09
[RD2]_CellB_1.1V	SEU hard. SRAM	90 nm	/bit	1.24E-09	1.24E-09
[RD2]_CellC_0.9V	SEU hard. SRAM	90 nm	/bit	1.32E-08	1.32E-08
[RD2]_CommercialCell_0.9V	SEU SRAM COTS	90 nm	/bit	2.04E-06	2.04E-06
[RD3]_20nmFF_0et55deg	SEU bulk flip-flops	20 nm	/FF	1.28E-07	1.28E-07
[RD3]_55nmBulkSRAM_0;45;65;75deg	Bulk SRAM	55 nm	/bit	2.02E-07	2.02E-07
[RD4]_45nm,1.3V,12.5MeV_SRAM	SBU SRAM 45 nm	45 nm	/Mbit	2.61E-02	2.61E-08
[RD4]_65nm,1.2V,6.3MeV_SRAM	SBU SRAM 65 nm	65 nm	/Mbit	3.58E-02	3.58E-08
[RD4]_65nm,1.2V,12.5MeV_SRAM	SBU SRAM 65 nm	65 nm	/Mbit	2.18E-02	2.18E-08
[RD5]_90nm_SRAM_0.9V	SEU SRAM	90 nm	/bit	1.70E-06	1.70E-06
[RD5]_90nm_SRAM_1.0V_0,30,45deg	SEU SRAM	90 nm	/bit	1.94E-06	1.94E-06
[RD5]_90nm_SRAM_1.1V	SEU SRAM	90 nm	/bit	7.47E-07	7.47E-07
[RD10] N. Sukhaseum NSREC 2014	SEU FPGA RAM	45 nm	/dev	2.49E-05	2.49E-05

Comparison with the « indirect » ionization rate

LEO 800 km (1 g.cm⁻²)

Rate ratio (direct ionization divided by indirect ionization)

Reference	Experiment	Tech. node	Cross- section	Ratio direct/indirect ionization
[RD1]_data0_1et2MeV	SEU SRAM	65 nm	/Mbit	0.223
[RD1]_data1_1et2MeV	SEU SRAM	65 nm	/Mbit	0.225
[RD2]_CellB_0.9V	SEU hard. SRAM	90 nm	/bit	0.005
[RD2]_CellB_1.0V	SEU hard. SRAM	90 nm	/bit	0.002
[RD2]_CellB_1.1V	SEU hard. SRAM	90 nm	/bit	0.001
[RD2]_CellC_0.9V	SEU hard. SRAM	90 nm	/bit	0.040
[RD2]_CommercialCell_0.9V	SEU SRAM COTS	90 nm	/bit	2.414
[RD3]_20nmFF_0et55deg	SEU bulk flip-flops	20 nm	/FF	1.396
[RD3]_55nmBulkSRAM_0;45;65;75deg	Bulk SRAM	55 nm	/bit	1.287
[RD4]_45nm,1.3V,12.5MeV_SRAM	SBU SRAM 45 nm	45 nm	/Mbit	0.623
[RD4]_65nm,1.2V,6.3MeV_SRAM	SBU SRAM 65 nm	65 nm	/Mbit	0.848
[RD4]_65nm,1.2V,12.5MeV_SRAM	SBU SRAM 65 nm	65 nm	/Mbit	0.260
[RD5]_90nm_SRAM_0.9V	SEU SRAM	90 nm	/bit	0.201
[RD5]_90nm_SRAM_1.0V_0,30,45deg	SEU SRAM	90 nm	/bit	0.230
[RD5]_90nm_SRAM_1.1V	SEU SRAM	90 nm	/bit	0.088
[RD10] N. Sukhaseum NSREC 2014	SEU FPGA RAM	45 nm	/dev	0.003

Trapped proton flux at different altitudes

- External and transported flux (behind 1 g.cm⁻²)
- Worst-case at 4000 km alt.

The contribution of proton direct ionization to the SEU rate depends on the mission

Reference	Direct ionization rate ratio Alt. 4000/ 800km	Indirect ionization rate ratio Alt. 4000/ 800km	Direct ionization contribution to the rate at 800 km	Direct ionization contribution to the rate at 4000 km
[RD1]_data0_1et2MeV	224.8	52.1	18.3%	49.1%
[RD1]_data1_1et2MeV	225.7	52.1	18.3%	49.3%
[RD2]_CellB_0.9V	1 184.0	52.0	0.5%	10.8%
[RD2]_CellB_1.0V	224.6	52.0	0.2%	1.0%
[RD2]_CellB_1.1V	225.8	52.0	0.1%	0.6%
[RD2]_CellC_0.9V	137.1	48.6	3.8%	10.1%
[RD2]_CommercialCell_0.9V	223.0	52.0	70.7%	91.2%
[RD3]_20nmFF_0et55deg	121.9	41.4	58.3%	80.4%
[RD3]_55nmBulkSRAM_0;45;65;75deg	111.9	41.4	56.3%	77.7%
[RD4]_45nm,1.3V,12.5MeV_SRAM	196.9	50.6	38.4%	70.8%
[RD4]_65nm,1.2V,6.3MeV_SRAM	212.8	52.1	45.9%	77.6%
[RD4]_65nm,1.2V,12.5MeV_SRAM	180.3	50.6	20.6%	48.1%
[RD5]_90nm_SRAM_0.9V	224.7	52.0	16.7%	46.5%
[RD5]_90nm_SRAM_1.0V_0,30,45deg	224.7	52.0	18.7%	49.8%
[RD5]_90nm_SRAM_1.1V	224.9	52.0	8.1%	27.7%
[RD10] N. Sukhaseum NSREC 2014	212.0	41.9	0.3%	1.7%

16 test data sets from the literature

- Typical LEO orbit : limited impact observed
- Only one device with more than factor 5 in the worst-case environment

Reference	Experiment	Tech. node	Rate ratio direct/indirect ionization (LEO 4000 km)	Rate ratio direct/indirect ionization (LEO 800 km)
[RD1]_data0_1et2MeV	SEU SRAM	65 nm	0.964	0.223
[RD1]_data1_1et2MeV	SEU SRAM	65 nm	0.973	0.225
[RD2]_CellB_0.9V	SEU hard. SRAM	90 nm	0.122	0.005
[RD2]_CellB_1.0V	SEU hard. SRAM	90 nm	0.010	0.002
[RD2]_CellB_1.1V	SEU hard. SRAM	90 nm	0.006	0.001
[RD2]_CellC_0.9V	SEU hard. SRAM	90 nm	0.112	0.040
[RD2]_CommercialCell_0.9V	SEU SRAM COTS	90 nm	10.364	2.414
[RD3]_20nmFF_0et55deg	SEU bulk flip-flops	20 nm	4.105	1.396
[RD3]_55nmBulkSRAM_0;45;65;75deg	Bulk SRAM	55 nm	3.477	1.287
[RD4]_45nm,1.3V,12.5MeV_SRAM	SBU SRAM 45 nm	45 nm	2.425	0.623
[RD4]_65nm,1.2V,6.3MeV_SRAM	SBU SRAM 65 nm	65 nm	3.464	0.848
[RD4]_65nm,1.2V,12.5MeV_SRAM	SBU SRAM 65 nm	65 nm	0.927	0.260
[RD5]_90nm_SRAM_0.9V	SEU SRAM	90 nm	0.870	0.201
[RD5]_90nm_SRAM_1.0V_0,30,45deg	SEU SRAM	90 nm	0.993	0.230
[RD5]_90nm_SRAM_1.1V	SEU SRAM	90 nm	0.383	0.088
[RD10] N. Sukhaseum NSREC 2014	SEU FPGA RAM	45 nm	0.017	0.003

07/03/2017 – ESA/CNES Presentation Days

Over the panel of selected devices for this analysis

- Critical impact of proton direct ionization observed only on few cases
- In extreme cases (very sensitive device in worst-case environment) the proton direct ionization contribution can reach 90% of the trapped proton SEU rate

• The work on this topic is going on in 2017...

Software development

• Calculation accuracy improvement by taking into account the cross section curve shape in the rate estimation (not only the σ_{peak})

Environment contribution

 Study the cases of solar and cosmic protons in order to asses the proton direct ionization rate criticality for such space environments

