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Introduction 

 Electronic device integration 
scale decrease → SEU 
sensitivity increase 
 

 Technology nodes 90nm and 
lower (65nm, 45nm, 28nm…) 
 Necessary charge to upset a 

device low enough to be 
sensitive to proton direct 
ionization 

 
 Proton caused SEU 

 Recoil atom 
 Indirect event due to the charge 

generated by a secondary ion 
 Direct ionization 

 Charge generated by the incident proton 
leads to an event 

 The aim of this study is to perform experimental testing of proton 
direct ionization sensitivity and to propose a rate estimation method 
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 Maximum LET at end of path 
 
 Significant deposited charge 

over a small distance in the 
last silicon microns 
 

 Proton direct ionization may 
occur when 
 
 Maximum generated charge 

in the device active area 
 Incident proton stops in the active 

area 
 Device sensitive enough 

compared to the generated 
charge 
 Low SEU critical charge 
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 2011 – State-of-the-art establishment 
 Proton direct ionization methodology proposition including 

 Experimental characterization 
 Rate computation 

 

 2012/2013 – Experimental phase preparation 
 Selection and procurement of potentially sensitive devices 

 Commercially available SRAM memory cell below 65 nm tech. node 
 Identification of an adapted test facility 

 Proton beam at low flux under vacuum with in-situ bias and tilting possibility 
 

 2014 – 45nm FPGA experimental characterization 
 Proposed test and calculation methodology validation 

 Direct ionization test data 
 Contribution to the SEU rate calculation 

 Results published at NSREC 
 NSREC 2014 Proceedings PB-5 

 

 2015/2016 – Proposed methodology application to existing test data 
 Proton direct ionization OMERE module prototype development 
 Proton direct ionization contribution to the rate estimation 
 Results submitted at Radecs 2016 

Proton ID R&T Studies Story 
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 Test-bed developped by 
TRAD for low energy proton 
beam experiments 
 
 SEU count 
 Stuck bit detection 
 SEFI management 
 SEL protection 

 
 Irradiations performed at 

CNA (Centro Nacional de 
Aceleradores, Sevilla, Spain) 
 
 3 MV Tandem accelerator 
 Incident proton energy 

750keV to 6MeV 
 Tilted experiments 0° to 60° 

 Effective penetration depth 
variation 

Test configuration 

CNA proton facility 

Experimental Characterization 
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 Cross section increase below 1.5MeV 

 Direct ionization sensitivity of the tested devices 
 

 Irradiations at different energies and tilt angles 
 Tilted irradiations are plotted on the graph at the energy 

corresponding to the same effective range in silicon 

Irradiation 2MeV, 60° 
displayed at 1.27MeV 

Test Results 
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 The experimental data is compiled in order to 
calculate a rate 
 

 Reconstructed cross section curve at fixed energy 
as a function of the tilt angle 
 Based on the penetration depth value 

R (2 MeV, 60°) 

R (1.27 MeV, 0°) 

R (1.5 MeV, 37°) 

= 

= 

 Irradiation at 
2MeV, 60° 

 displayed at 37° 

 At 1.5 MeV, cross 
section values at 
normal incidence are 
not representative of 
the direct ionization 
sensitivity 

Test Results 
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 Between 1,25 and 1,5 MeV, the relative proportion of direct events decreases with 
respect to the indirect events increase 
 There is an energy range in which the direct and indirect ionization regimes 

overlap 
 

 In order to focus on direct ionization, the test data is completed by a calculation 
hypothesis 
 The two sensitivity threshold angles appearing on the graph are used to 

define the direct ionization sensitive layer 
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 Sensitive layer depth and thickness 

calculated with respect to the 
threshold angles 
 15° and 66° in the example of 

DUT A at 1.5MeV 
 

 It is assumed that an incident proton 
has to stop in the sensitive layer in 
order to be likely to create an event 
by direct ionization 
 Effective flux φ(θ) to take into 

account at each angle 
 φ(θ) is the proportion of protons 

from the environment spectrum 
with a path ending in the 
sensitive layer 

 
 At a tilt θ, over all the incident 

protons stopping in the sensitive 
layer, the ratio of particles leading to 
an event is given by the measured 
cross section σ(θ) 
 Simplification : σ(θ) = σmax 

Sensitive layer calculation 

Calculation methodology 

Data Analysis 
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 A worst-case hypothesis is considered for the calculation 

Consideration of a 
step function 

 worst-case, takes 
into account the 
uncertainty on σpeak 

Direct Ionization Rate Calculation 
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 Documentary research for available proton test data 
 

 [RD1] Low Energy Proton Single-Event-Upset Test Results on 65 nm SOI 
SRAM, David F. Heidel, IEEE TNS VOL. 55, NO. 6, DECEMBER 2008  

 [RD2] Heavy Ion, High-Energy, and Low-Energy Proton SEE Sensitivity of 90-nm 
RHBD SRAMs, E. H. Cannon, IEEE TNS VOL. 57, NO. 6, DECEMBER 2010 

 [RD3] The contribution of low-energy protons to the total on-orbit SEU rate, N. A. 
Dodds, IEEE TNS DECEMBER 2015 

 [RD4] Single-Event Upsets and Multiple-Bit Upsets on a 45 nm SOI SRAM, 
David F. Heidel, IEEE TNS VOL. 56, NO. 6, DECEMBER 2009 

 [RD5] Low-Energy Proton Testing Using the Boeing Radiation Effects Laboratory 
2.2 MeV Dynamitron, Jerry Wert, February 2012 

 Development of a direct 
ionization rate calculation 
module in OMERE 5.0 
 Specific format for input test data 
 Energy – Angle – Cross-section 

Direct Ionization Rate Calculation 
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 Rate calculation for a typical orbit  
 LEO 800 km (1 g.cm-2) 

 Direct ionization event rate (per dev. or per bit, per day) 

Direct Ionization Rate Calculation 
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 Comparison with the « indirect » ionization rate 
 LEO 800 km (1 g.cm-2) 

 Rate ratio (direct ionization divided by indirect ionization) 

Direct Ionization Rate Calculation 
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 Trapped proton flux at different altitudes 
 External and transported flux (behind 1 g.cm-2) 
 Worst-case at 4000 km alt. 

Proton Environment Impact 
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Proton Environment Impact 
 The contribution of proton direct ionization to the SEU rate depends 

on the mission 
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 16 test data sets from the literature 
 Typical LEO orbit : limited impact observed 
 Only one device with more than factor 5 in the worst-case environment 

Criticality Assessment 
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 Over the panel of selected devices for this analysis 
 
 Critical impact of proton direct ionization observed only on few 

cases 
 In extreme cases (very sensitive device in worst-case environment) 

the proton direct ionization contribution can reach 90% of the 
trapped proton SEU rate  

 
 

 The work on this topic is going on in 2017… 
 

 Software development 
 Calculation accuracy improvement by taking into account the cross section curve shape 

in the rate estimation (not only the σpeak) 
 Environment contribution 

 Study the cases of solar and cosmic protons in order to asses the proton direct 
ionization rate criticality for such space environments 

Conclusion 
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