

Modeling Planetary Radiation Environments with Geant4

Patrícia Gonçalves LIP, Portugal

Magnetosphere or crustal magnetic fields? : Structure and strength of the B field Solar Cycle : minimum/maximum SEP?

Solar Cycle Variations

Soil: composition Water ?

Atmosphere? Composition Depth seasonal & day-nigh variations

Atmospheric depth and composition
> 95% CO_{2,}
0.01 Earth's atmospheric depth

Localized crustal magnetic fields

(umbrellas)

Radiation environment

3

SEP and GCR @ ~1.5 AU Albedo neutrons (modulated by soil composition) No radiation belts "umbrella" electrons/ low energy protons

MarsREM: the Mars Energetic Radiation Environment Models

dMEREM : detailed Mars Energetic Radiation Environment Model eMEREM : engeneering Mars Energetic Radiation Environment Model

- interfaced to SPEs , GCR (p, α , ions)
 - to be used by mission designers and planners and by radiation experts

web-based and interfaced with existing radiation shielding and effects simulation tools

LIP developed dMEREM, a Geant4 based model for the radiation environment on Mars, Phobos and Deimos, including local treatment of surface topography and composition, atmospheric composition and density (including diurnal + annual variations) and local magnetic fields.

Work sponsored by the ESA Technology Research Programme (http://reat.space.qinetiq.com/marsrem) concluded in 2009

Inputs as a function of latitude, longitude, in a 5 x 5 degree grid, and season.

Atmosphere composition from EMCD (Eurpean Mars Climate Database) or MarsGRAM (NASA)

Topography from Mars Laser Altimeter aboard Mars Global Surveyor.

Soil Composition from analysis of data from Gamma Ray Spectrometer aboard Mars Odyssey, including water content and CO₂ ice.

Magnetic Field Models, from PLANETOCOSMICS (L. Desorgher)

Detector

Size:

300 x 300 km pixel, 50 km altitude (100 km if B is on)

Atmosphere:

20 constant depth (g/cm2) layers composition and ρ from EMCD /MARSGRAM (including CO2 ice)

Soil:

top layer with composition and density from GRS data analysis (including water content)

dMEREM "pixel" if B is on 100 km : 1 atmospheric layer 50 km: 20 atmospheric layers if B is on 300 km 900 km (default) (default)

 Soil Composition from analysis of data from Gamma Ray Spectrometer aboard Mars Odyssey, including water content and CO₂ ice.

H2O High

180

Fe (Wt%)

GCR (proton, nuclei) and SEP proton with Energy between 10 MeV to 1 TeV

log-log binned input spectra

generation at a fixed point: $(0, (d_{pixel}/2)-1 \text{ km}, H_{max})$

 $d_{pixel}/2$ is half of the pixel side [150 km]

 H_{max} is the maximum atmospheric altitude [50 km]

Direction

 θ between 0° and θ_{max} =atan((dpixel/2-1km)/H_{max}) [80.5°] ϕ fixed to a single value [90°]

Benchmark Physics Scenarios

With Geant4.9.1

	Standard EM.	Low Energy EM	Hadronic	HP neutron
1-Full: had+leem+ ln	no	yes	yes	yes
2-Standard: had+em+ln	yes	No	yes	yes
3-Fast: had+em+ln	e/gamma>100 keV	No	yes	yes
4-EM: leem	no	yes	no	no

Full :

detailed description of the electromagnetic and hadronic component *very time consuming*

Standard:

standard em physics + HP neutrons

Fast:

for a preliminary evaluation of hadronic (p+n) interactions-> dose

embedSelection

gamma studies

dMEREM outputs

For any location on Mars surface, atmosphere, underground or at Phobos and Deimos surface:

Particles are detected in Sensitive detectors placed at a single altitude for detailed analysis or at different atmospheric depths for profile analysis.

The outputs are given in the form of csv files.

Ouputs:

- Particle energy spectra for primaries and secondaries
- Service energy spectra for p,n,α, e,gamma,π, μ and ions
- LET spectra im Si and H2O
- Effective dose (*)
- Ambient Dose Equivalent (*)
- (*) using fluence to ED conversion factors interfaced with G4 (Pelliccioni)

Spectra of primaries and secondaries and different particle species at a given location on Mars surface and for a given epoch, due to GCR, including albedo component.

dMEREM and eMEREM operate as standalone applications but were integrated into the Space Environment Information System (SPENVIS)

SPENVIS DEVELOPER Project: FP Output Radiation sources and effects Help Mars Energetic Radiation Environment Models (MEREM): Parameters Help								
	Model selection: detailed model Atmosphere model: Mars climate data base Magnetic field: off							
		Coordin	ate inpu	ıt: single	location	-		Radiation environment: galactic cosmic rays 🔻
Epoch:	,	01	✓ Jan	2005	→ 00	• : 00 •	· : 00 ·	Particle type: heavy ion 👻
Latitud	le [deg]:	:					0.0	Ion:
Longitu	ude [deg	ı]:					0.0	Nr. of primary particles: 100 v Be
Elevati	Elevation regime:			above	surface 🔻	B E		
Elevati	ion [km]	:					0.0	Ň
Grid ha	lf size [l	cm]:		15	0	by	150	F
	Soil composition: user defined						Ne Na	
	Label: Basalt-Andesite (Generic)					Mg Al Si		
SiO:	0.539	MnO:	Mass	fraction	5 0.000	NiO:	0.000	P S
50.	0.035	CaO:	0.000	CraOat	0.000	BaOat	0.000	CI
Al-O-:	0.000	Na.O:	0.030	Ene:	0.000	P203.	0.000	Ŕ
MaQ:	0.171	Na20.	0.027	CoO:	0.000	60- ico:	0.000	Ca Sc
MgO:	0.072	K ₂ U: Total o	density [[g cm ⁻³]:	3.5	CO ₂ ice.	0.000	<u>Ti</u> ▼

Reset

Run

"Characterization of the Martian radiation environment on selected locations using the ESA Mars Energetic Radiation Environment Models", Icarus 218 (2012) 723–734

S. McKenna-Lawlor¹, P. Gonçalves⁴, A. Keating⁴, B.Morgado⁴, D. Heynderickx², P. Nieminen³, G. Santin³, P, P. Truscott⁵, F. Lei⁵, B. Foing⁶, and J. Balaz^{1,7}.

Dependence of ED and ADE on soil composition and epoch

	Apr-2002	, "Solar ma	aximum"	Dec-2006, "Solar minimum"			
	• expect lo	wer ED/A	DE (GCR)	• expect higher ED/ADE (GCR)			
dMEREM	•Winter on	north pol	e (*)	• Summer on north pole (*)			
	Viking	Phoenix	Mawrth	Viking	Phoenix	Mawrth	
ED (mSv)	11.30	11.00	11.00	20.6	19.10	20.4	
ADE (mSv)	6.02	5.49	4.30	10.5	7.8	7.67	
ADE(i) / ADE (Viking)	1.00	0.91	0.71	1.00	0.74	0.73	
H ₂ O	3.0 %	50.0 %	9.4 %	3.0 %	50.0 %	9.4%	
Dry Ice	No	Yes(*)	No	No	No (*)	No	
Atmospheric depth (g/cm ²)	17.8	19.2	16.5	17.8	17.8	15.1	
Soil density (g/cm ³)	1.8	1.2	2.2	1.8	1.2	2.2	

14

GCR reach the surface of Mars and originate albedo neutrons increasing the ADE values.

Most SEPs are degraded in the atmosphere and do not reach the surface.

Both MEREM models agree on GCR but not on SEP prediction

(difference on e.m. results to be investigated)

There is a resonable agreement between the MEREM and the HZTERN model used by NASA.

	Dose Equivalent (mSv)			
Regolith soil type	"Solar minimum"	"Solar maximum"		
HZETRN (De Angelis et al.,2007)	11.2	4.5		
eMEREM – Viking 1*	13.8	8.0		
dMEREM – Viking 1*	10.5	6.0		

(*) ADE

NASA Mars short surface stay scenario

(430 days = 400 cruise+ 30 surface)

30 Day Stay on Surface - solar minimum	Dose Equivalent (mSv)		
GCR induced dose	Skin	BFO	
Ionizing Radiation Exposure Limits for LEO (Simonsen et al. ,1993)	1500	250	
eMEREM Viking 1/Phoenix/Mawrth *	21.2/ 16.0/21.0		
dMEREM Viking 1/Phoenix/ Mawrth *	21.0/20.3/14.4		

(*) ADE

0.5-0.7 mSv/day

Models predictions are that it is possible for Astronauts to remain on Martian surface for months with no serious risk!

For longer permanences shelters are required (GCR never stop...)

Gale Crater predictions with dMEREM are underway ! Curiosity RAD published data awaited for more complete validation of dMEREM with data from Mars surfa

dMEREM review and upgrades

dMEREM last version within MarsREM was delivered in May 2009. It was compliant with G4.8.1 up to G4.9.1. We are now at G4.9.6.p01!

Requirements should be revisited and the code should be updated to profit from current G4 capabilities:

- Inputs: Need more flexible and simple particle spectra input use weights as a function of primary spectra and correct at post-processing (in spenvis, in particular, more flexibility on input choice would be desirable)
- generation of primaries: review of primary generation methodology event biasing (reduce execution time) -> essential for on-line efficient use (spenvis)
- Sensitive detector and scoring : use "recent" scoring capabilities of Geant4 (exec.time?) Review fluence to ED and ADE conversion factor
- Physics lists: G4 physics lists changed significantly since 2009: update needed !
- Outputs: Review of output variables including dosimetric quantities (e.g.: dose equivalent would be useful)

Radiation environment: similar to Mars

No Atmosphere

- Very weak localized crustal magnetic field
- Radiation environment SEP and GCR @ 1AU Albedo neutrons (modulated by H2O) No radiation belts

Medium Energy Neutron Distribution Lunar Prospector

(Lunar Prospector)

Measured Neutron spectra

Lunar Radiation Environment Model

TO BE DONE

Map the radiation Environment on the Moon as a function of latitude-longitude & season

Inputs:

 data characterizing the topography & the soil composition for the whole moon (with good spatial resolution)
GCR and SEP fluxes @ 1 AU (from different data & models)

Validation & benchmarking

With existing data

(instruments in orbiters: LEND, CRATER, RADOM) Comparison with other models (Langley, etc.)

Ongoing and planned activites

Review and upgrade dMEREM

Revisit dMEREM, make it more user friendly and faster! A lot went on inside G4 since v9.1 ...

Validate dMEREM with data from Mars surface Gale Crater dMEREM prediction analysis is in preparation

Develop a Lunar Energetic Radiation Environment Mode Radiation map the Lunar radiation environment with a model based on the same strategy as dMEREM

Analyse data from Lunar missions

Assess human Lunar missions hazards and mitigation strategies

