A Three-Dimensional Simulator for Internal-Charging Effect

Ding Gong, Chen Shen

Ke Jing Da Electronics Ltd., China

Email: gongding@cogenda.com

Zheng-Long Zhang

National Space Science Center. Chinese Academy of Science, China

Email: zzl@nssc.ac.cn

Presented at the Geant4 Space User Workshop Mar 2013, Barcelona

Summary

- 3D simulator of internal charging effect
 - Geant4 for tracking high-energy electrons
 - Continuum PDE solver for Poisson/continuity equations

Outline

- Description of the Simulator
 - Physics
 - Software components
- Test cases
 - 1D Slab: comparison with DICTAT
 - 3D PCB: performance bottleneck
- Proposal: Level-set in G4
 - Level-Set primer
 - Performance of level-set in G4 context
 - Road map

Physical Processes I

- Electron Physics
 - Multiple scattering / Ionization
 - Bremsstrahlung
- Photon Physics
 - Compton scattering

Physical Processes II

• Poisson's Eqn

$$\nabla \cdot \varepsilon \nabla \varphi = -\rho$$

• Charge continuity Eqn

- Boundary Conditions
 - Dirichlet boundary at all insulator-conductor interface
 - Constant voltage, zero charge
 - Neumann boundary at insulator-vacuum interface

Software Components

- Two Separate Programs
 - Geant4
 - Continuum PDE solver
- LibAMS for inter-process communications
 - Developed by the Petsc team of Argonne Natl. Lab.
 - MPI-compatible
 - Socket- or File-based IPC
- Three sets of Mesh Grids
 - Tessellated solid (surface mesh) for Geant4
 - Tetrahedral mesh for continuum PDE solver
 - Oct-tree mesh for dose-rate calculation

Software Components

Current Geometry Modeling

Dose Rate Calculation

<u></u>Υ

- Why not do this in G4?
 - Too many detectors needed
- Hierarchical Oct-Tree mesh for dose-rate calculation
 - Mesh-size control
 - Very fast geometry operations

Dose Rate Calculation

- Track's contribution to the dose-rate in
 - Box B0: E_a E_b
 - Box B1: E_b E_d
- Particle energy linearly interpolated along each step of the track

Continuum PDE Solver

- Using the framework of Cogenda's TCAD
 - Unstructured Mesh Elements
 - Finite-Volume Discretization
 - Newton's method for nonlinear equations
- Capability
 - Fully-parallel computation
 - Able to handle up to a few million mesh points

Outline

- Description of the Simulator
 - Physics
 - Software components
- Test cases
 - 1D Slab: comparison with DICTAT
 - 3D PCB: performance bottleneck
- Proposal: Level-set in G4
 - Level-Set primer
 - Performance of level-set in G4 context
 - Road map

Test Case: 1D Slab

• Compare with the maximum voltage computed by DICTAT (SPENVIS)

Test Case: 1D Slab

• Maximum Voltage under a high flux of 10⁷ cm⁻²s⁻¹

Flux type	DICTAT	This work
Isotropic flux with FLUMIC spectra	2560 V	882 V
Unidirectional flux 0.5 MeV energy	6924 V	3447 V
Unidirectional flux 1.0 MeV energy	157 V	69.3 V

• Maximum Voltage under different flux (0.5 MeV unidirectional)

Flux	DICTAT	This work
10 ³ cm ⁻² s ⁻¹	2.38 V	1.42 V
10 ⁴ cm ⁻² s ⁻¹	21.2 V	12.6 V
10 ⁵ cm ⁻² s ⁻¹	186 V	87 V
10 ⁷ cm ⁻² s ⁻¹	6924 V	3447 V

Comparison of Electron Deposition Profile

- Difference is obvious
- At low flux, this should be the main source of error.
- Improved model in DICTAT already *

Comparison of Dose Rate Profile

- When flux is high, significant difference in induced conductance
- Could be a major source of error at high flux

Tessellated solid for Geant4.

After simplification, the surface mesh contains 256 triangular facets.

Tetrahedral mesh for continuum PDE solver

- Isotropic incident electrons (General Particle Source in G4)
- FLUMIC worst-case energy spectra at GEO orbit
- 10⁷ particles

Solution: Potential distribution in the structure

Computation Time

Structure	PCB board	Structure A
GDML	Tessellated solid 256 facets	Intrinsic G4 CSG solid 98 physical volumes
Number of mesh points (for continuum PDE solver)	110,313	97,963
Number of electrons	107	10 ⁸
Particle Tracking in G4 *	2 hours (serial)	12 hours (serial)
Dose-Rate *	30 minutes (serial)	20 minutes (serial)
Poisson/Continuity Eqn	3 minutes (parallel)	3 minutes (parallel)

* both components are very easy to parallelize

Bottleneck in Computation

- Bottleneck
 - Particle tracking dominates computation time
 - 95% time in 4 geometry predicate routines
 - Tessellated solids with 10k facets
- Solutions
 - Minimize # of facets in tessellated solids
 - Voxelized tessellated solids (available in 4.9.6)
 - Level-set geometry engine?

Outline

- Description of the Simulator
 - Physics
 - Software components
- Test cases
 - 1D Slab: comparison with DICTAT
 - 3D PCB: performance bottleneck
- Proposal: Level-set in G4
 - Level-Set primer
 - Performance of level-set in G4 context
 - Road map

Closed-curve in 2D.

z=0 Contour of a 3D equation

http://en.wikipedia.org/wiki/File:Level_set_method.jpg

Background mesh

Initialization of Level Set

- Distance field
 - Inside region: >0
 - Outside region: <0
 - Value = Distance to nearest point on boundary
- Multiple Regions?
 - One distance field for each material
 - Special "tricks" to ensure
 - No overlapping
 - No holes

Initialization of Level Set

- Distance field
 - Inside region: >0
 - Outside region: <0
 - Value = Distance to nearest point on boundary
- Multiple Regions?
 - One distance field for each region
 - Special "tricks" to ensure
 - No overlapping
 - No holes

Level-Set Performance in G4 Context

- K: number of regions
- N: level-of-details
 - Tessellated solids: number of mesh elements per surface area
 - Level-set: number of background mesh elements per surface area
- M: number of voxels

Geometry predicates	Tessellated Solid	Voxelized TS G4.9.6	Level-set
Exact distance to region boundary along a given direction?	O(<i>N</i>)	O(N M ^{-1/3})	O(log N)
Conservative estimate of distance to region boundary?	O(<i>N</i>)	O(M + N M ^{-1/3})	O(1)
Is the given point inside (outside) of the region?	O(<i>N</i>)	O(N M ^{-1/3})	O(1)
In which region a given point is located?	O(N log K)	O(K N M ^{-1/3})	O(log K)

- Could be implemented as a Navigator, G4LevelSetNavigator
- We expect a 10x speedup tracking particles in complex geometries.

Level-Set Example: Build from B-Rep

Bolt: built from a STEP file

Spanner: built from a STEP file

Level-Set Example: Build from CSG

PCB, built from a GDML file

Current Geometry Modeling

Road Map on Level-Set Methods

Summary

- 3D Simulator of Internal Charging Effect
 - Geant4 for particle transport simulation
 - Continuum PDE solver for Poisson/continuity equations
- Computation bottleneck in particle tracking
- Proposal of Level-Set-based geometry engine in Geant4
 - Speedup particle tracking in complex geometries
 - Unified geometric description in G4 and Continuum PDE solver
 - Enough demand to justify G4LevelSetNavigator ?