A Fully-Physical Simulation Framework of Single-Event Effects

Cogenda Pte Ltd Mar 2013

Presented at the Geant4 Space User Workshop Mar 2013, Barcelona

Summary

10

1

- Build 3D model for a commercial SRAM chip
- Fully-physical simulation
 - Particle simulation (Geant4)
 - TCAD simulation (TCAD)
- Compare the simulated SEU cross-section against experimental data
- Validated the viability and correctness of the fully-physical approach

HM62V8100, SEU cross-section

₩

₩

40

H.X. Guo et al, Atomic energy science and technology, v44, pp. 1498-1504, 2010.

Outline

- Components in the framework
 - 3D modeling: Gds2mesh
 - Geant4-based particle simulator: GSeat
 - TCAD device simulator: Genius
 - Statistical sampling: runSEU
- Applications
 - SEU Cross-section of a 0.18um SRAM: HM62V8100
 - Single-event block upset in 90nm SRAM: CV62126EV
 - Extension to Multiple-Composite-Sensitive-Volume model

Components in the Framework

Components in the Framework

Particle Simulation

- Physics list from SLAC with updates
- E.g. Physics models for heavy ions:
 - Electromagnetic interactions
 - Multiple scattering
 - Screened Coulomb scattering
 - Hadronic
 - Inelastic collision

Blue: :positively charged particlesRed:negatively charged particlesGreen:neutral particles

20x C⁺ 80MeV

Particle Simulation: Nucleus Recoils

³⁵Cl⁺ 138 MeV

- G4ScreenedNuclearRecoil
- Produces a recoil ion, may increase energy deposited in sensitive volume
- Large scattering angle is possible
 - Can we bias this process?
- Recently become important
 - SEU cross-section seen by a customer can only be explained by NR

Particle Simulation: Inelastic Nuclear Collision

¹²C⁺ 80MeV

- Enabled models:
 - G4QDM
 - Binary Cascade (light ions)
 - EM-dissociation
- Produces several secondaries, may affect several sensitive volumes.
- We haven't seen any ground test data that invokes inelastic collision model.
- Needed when extrapolating to SEU rate in space environment.

Interface of Geant4 to TCAD

- Conversion
 - From Geant4: trajectory and energy deposition
 - To TCAD: e-h pair generation rate
 - Exchange rate: 3.6eV \rightarrow e-h pair
- Spatial Structure of Ion Trajectory
 - Energy deposition of each step
 - Distributed in a capsule-shaped region, according to

$$f(r) = \frac{E_{dep}}{\Omega} \exp\left(-\frac{r^2}{L_{ROC}^2}\right)$$

- Known to be incorrect.

Structure of Track

Detailed simulation shows that radial distribution of deposited energy

- dependent on energy,
- has complex function form.

- Too expensive to be used on regular basis
 - Too slow
 - Takes too much disk space
- Need an analytic model for radial distribution
 - e.g. A. Akkerman NIM 2005.

Structure of Track (in development)

- Radial structure of track consists of two components
 - Core
 - Many low-energy electrons
 - Low fluctuation from particle to particle
 - Analytic model
 - Tail
 - Dominated by fewer number of high-energy electrons
 - Large fluctuation from particle to particle
 - Track individual high-energy electron in Geant4
- To merge the two components
 - What's the appropriate cut-off range?
 - particle/energy dependent?
 - Truncation of the analytic model?

Outline

- Components in the framework
 - 3D modeling: Gds2mesh
 - Geant4-based particle simulator: GSeat
 - TCAD device simulator: Genius
 - Statistical sampling: runSEU
- Applications
 - SEU Cross-section of a 0.18um SRAM: HM62V8100
 - Single-event block upset in 90nm SRAM: CV62126EV
 - Extension to Multiple-Composite-Sensitive-Volume model

Fast Solver: Overview

- Fast Solver
 - 5x to 10x speed in transient and operation point analyses
 - No change in device equations: Same physics
 - Half-implicit algorithm to solve equations
 - Suitable for CMOS circuits with 2-30 transistors (30k 5m mesh nodes).
- Status
 - Started in 2010, Stable since Sep 2011
 - Tested extensively with selected customers
 - Presented at SISPAD2012
 - China/US Patents being filed

Fast Solver: Simulation Speed

number of mesh nodes (x1000)

Cogenda data points:

Transient of two switches (rise/fall), 2 CPUs (Xeon 5620) Other TCAD data points:

- 1: 6T SRAM, 45K mesh nodes, transient
- 2: power device , 500K mesh nodes, steady-state
- 3: 6T SRAM, 1million mesh nodes, steady-state

4 CPUs yr2008 (old)

- ? CPUs
- 4 CPUs yr2011 (latest)

Trad.: Fully-implicit method Fast: Half-implicit method

Fast Solver: Simulation Accuracy

Error in inverter rise/fall time < 5%.

Inverter circuit, 110k mesh nodes

World's Largest TCAD Simulation

Schematic

Mask layout

- D-Flipflop circuit
- 24 transistors
- 90nm CMOS design
- Largest circuit block in a standard library
 - Presented at SISPAD2012

World's Largest TCAD Simulation

- Realistic 3D model
- 1,673,519 mesh nodes
- Simulation: 95 MeV Cl⁺ ion strikes on the device

World's Largest TCAD Simulation

- Data flipped
- Simulate 3 ns in 252 time steps
- Completed in 268 minutes, with 48 cores.

4 nodes, dual Xeon X5670 CPUs 48 cores in total

In comparison, simulate a SRAM device (960,000 nodes) with Synopsys tool takes ~1 week.

Fast Solver for SEU

Simulation time for SEU simulation on some circuits (field data).

CMOS Circuit	Technology node	Mesh nodes (x1000)	Simulation Time (CPU E5-2650 core-hours)	Memory (GB)
6T SRAM	90nm	80	4	3
6T SRAM Hitachi HM62V8100	0.18um	310	24	10
12T RadHard SRAM	0.18um	720	70	30
12T RadHard SRAM	0.25um	600	60	24
24T D Flip-Flop	90nm	1,670	220	190

Outline

- Components in the framework
 - 3D modeling: Gds2mesh
 - Geant4-based particle simulator: GSeat
 - TCAD device simulator: Genius
 - Statistical sampling: runSEU
- Applications
 - SEU Cross-section of a 0.18um SRAM: HM62V8100
 - Single-event block upset in 90nm SRAM: CV62126EV
 - Extension to Multiple-Composite-Sensitive-Volume model

Statistical Sampling

- Performance bottleneck
 - TCAD >10,000× slower than G4 simulation
 - Reduce # of TCAD simulation aggressively
 - Ensure statistically unbiased
 - Outright reject a particle as non-SEU: incorrect
 - Assign a low SEU probability to a particle: correct in Bayesian sense
- runSEU
 - Importance sampling with Subset Simulation
 - Scheduling computation "targets" and "tasks"
 - Data management

Software Architecture

- Integrating > 10 Programs
 - Python as driver/glue language
 - Call external simulators (for long simulation)
 - Legacy C/Fortran module integrated into python
 - HDF5 for bulk data storage
 - Job Scheduler (internal and external)
 - GUI, Graphing, Visualization

Outline

- Components in the framework
 - 3D modeling: Gds2mesh
 - Geant4-based particle simulator: GSeat
 - TCAD device simulator: Genius
 - Statistical sampling: runSEU
- Applications
 - SEU Cross-section of a 0.18um SRAM: HM62V8100
 - Single-event block upset in 90nm SRAM: CV62126EV
 - Extension to Multiple-Composite-Sensitive-Volume model

IC Structural Analysis

- COTS Low-power SRAM
- HM62V8100 (Hitachi)
- 8Mbit
- 0.18 µm bulk CMOS Process
- TSOP II packaging

IC Structural Analysis

Optical micrograph of stained active after de-layering Chip area 8.16mm x 5.68mm

Structural Analysis: Bit Cell

SEM micrograph of the Poly layer in SRAM array Metal 0 local interconnects are visible Area of bit cell: $3.02 \times 1.28 \ \mu m^2$.

Structural Analysis: Bit Cell

Cross-sectional SEM micrograph along A-A'

Structural Analysis: Bit-line/Word-line

Metal 2: bit line

Metal 1: word line

Structural Analysis: Extracted Layout

3D Modeling: SRAM cell

3D Modeling: Structural Details

3D Modeling: Doping Profile/Mesh

3D Modeling: Interconnects/Well Contacts

Cu⁺ 161MeV, t = 207 ps

Rejected Model 1:

Totally ignore well contacts outside this cell

Inconsistent with real device:

- Latch-up is seen
- Over-estimated SEU cross-section

Causes of inconsistency

- Large amount of e-h pairs under high LET particle strikes
- Well-contacts within cell not sufficient to remove carriers.
- Well potential collapses, causing latch-up

Cu⁺ 161MeV, t = 381 ps

Rejected model 2:

- Increased well area
- Several well contacts in adjacent cells
- Latch-up eliminated

Still inconsistent with real device:

Over-estimation of SEU cross-section

Causes of inconsistency

- Well area not large enough, carriers fill up the well
- Too few well contacts

Adopted Model 1:

- 20 µm well
- Extra n-well on the left/right
- Extra well contacts
- Correctly describes the carrier collection by well-contacts

Adopted Model 2:

- For high-LET particles
- Need to consider carrier collection by adjacent active region/circuit nodes
- Extra active region and contacts
- Correctly describes the carrier collection by adjacent actives

3D Modeling: Substrate

Actual chip size

- 8.2 x 5.7 x 0.25 mm
- TCAD model of this size is impractical

Rules for model sizing:

- Thickness > max. particle range
- Width > 2 x Thickness
- Compensate any reduced thickness with a series resistance

3D Modeling: Substrate

- As current flow into the substrate, it spreads out
- 60 um Truncating the width of the substrate causes under estimation of the charge collection.
 - Requirement: width > 2 x thickness

Peripheral Circuit Modeling

Transient Waveforms: Various Circuit Response Mechanisms

Waveform of left/right circuit nodes

SEU Flip Event Maps

Outline

- Components in the framework
 - 3D modeling: Gds2mesh
 - Geant4-based particle simulator: GSeat
 - TCAD device simulator: Genius
 - Statistical sampling: runSEU
- Applications
 - SEU Cross-section of a 0.18um SRAM: HM62V8100
 - Single-event block upset in 90nm SRAM: CV62126EV
 - Extension to Multiple-Composite-Sensitive-Volume model

SEU Threshold: Small-Probability Events

When simulating small SEU cross-section (near threshold)

- Few flipping events
- High statistical variance
- Needs a large number of samples

Solution:

 Importance sampling with Subset Simulation

Subset Sampling

Subset 1: Importance sampling

Subset Sampling

CDF of Minimum difference between left/right circuit nodes (ΔV)

Improved Convergence

10 Plain Monte-Carlo Runs Sample size: 400 Results show large variance 40 Subset Simulation Runs TCAD runs: <400 Much less variance

Performance and Cost

- Computing Environment
 - Commercial HPC service
 - Parallel computation on 10 computing nodes
 - All work complete within 1 week
 - Including debugging the mask and 3D model
- Costs

Machine time (core-hour)	16,200
Power consumption (KWh)	1,350
Commercial HPC service charge	~ US\$ 1,000

Outline

- Components in the framework
 - 3D modeling: Gds2mesh
 - Geant4-based particle simulator: GSeat
 - TCAD device simulator: Genius
 - Statistical sampling: runSEU
- Applications
 - SEU Cross-section of a 0.18um SRAM: HM62V8100
 - Single-event block upset in 90nm SRAM: CV62126EV
 - Extension to Multiple-Composite-Sensitive-Volume model

Single Event Block Upset

- Cypress CV62126EV, 90 nm, 1MBit, "SEL immune"
- Mapping logical address of flipped bits to physical location on chip

Single Event Block Upset

Suspected Reason

Weak VDD supply to N-Well: 108um, 90 Ohm

Outline

- Components in the framework
 - 3D modeling: Gds2mesh
 - Geant4-based particle simulator: GSeat
 - TCAD device simulator: Genius
 - Statistical sampling: runSEU
- Applications
 - SEU Cross-section of a 0.18um SRAM: HM62V8100
 - Single-event block upset in 90nm SRAM: CV62126EV
 - Extension to Multiple-Composite-Sensitive-Volume model

On-Orbit SEU Rate Prediction

- Fully-Physical Simulation too slow
 - A fast SEU assessment tool needed
 - Train once, using ground test results
 - Predict SEU rate in different radiation environment
- IRPP
 - Ground test \rightarrow fit to Weibull curve (training)
 - Integral LET spectra \rightarrow SEU rate (predicting)
- Composite Sensitive Volume
 - Ground test \rightarrow extract sensitive volume / sensitivity (training)
 - MRED \rightarrow effective collected charge (predicting)
- Can be formulated as a machine learning problem
 - Support Vector Machine is the machine-learning of our choice

SEU Rate Prediction as a Classification Problem

