

Special SEE Session:

The MuElec extension for microdosimetry in silicon

Mélanie Raine

CEA, DAM, DIF France

Geant4 Space Users Workshop, Barcelona - 03/05/2013

Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation/verification results

Proton track simulation in Geant4

Conclusion and Perspectives

CONTEXT: Need to take into account radial dimension of the ion track

- Test for SEE sensitivity: measure of the SEE cross section vs. LET
- LET = Linear Energy Transfer LET = $-\frac{1}{\rho} \frac{dE}{dx}$

 \Rightarrow Assume same LET = same effect.

- Vary with depth Z, penetration into matter
 - \Rightarrow Energy deposition = f(Z).
- But also radial dimension R of ion track \Rightarrow Energy deposition = f(Z,R).
- Decreasing size of components L \Rightarrow L < 0.25 µm \Rightarrow L ~ R or L < R

Energy E

ρ

dx

 \Rightarrow Heavy-ion induced SEE simulation in advanced devices requires the accurate description of radial ionization profiles.

Radial distance R

CONTEXT AND MOTIVATION

- Heavy-ion induced SEE simulation in advanced devices requires the accurate description of radial ionization profiles.
- Geant4 = adequate tool to simulate ion tracks
 - Succesfully used in combination with TCAD [1] or SEE prediction tool [2]
 - Down to the 32 nm node.
- Inherent limits in Geant4 ionization models (Livermore):
 - Recommended secondary production threshold at 250 eV
 - Limits the accuracy of ion track below 10 nm in radius
- ⇒ Need for more accurate Geant4 ionization models !
- Since 2010, development of the "MuElec" (µ-electronics) extension in Geant4 for microdosimetry in silicon
- \Rightarrow Part of Geant4 since release 9.6 beta (June 2012).

[1] Raine *et al.*, IEEE TNS, vol. 57, 2010.[2] Raine *et al.*, IEEE TNS, vol. 58, 2011.

ION

e⁻ E > 250 eV

> Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation results

Proton track simulation in Geant4

Conclusion and Perspectives

BRIEF DESCRIPTION OF THE THEORY

BRIEF DESCRIPTION OF THE THEORY

- Calculation of ionizing cross-section for the generation of electrons by incident electrons, protons and heavy ions:
 - Based on the Complex Dielectric Function Theory (CDFT).
 - Using the procedure described by Akkerman *et al.* [1].

Stopping power:

$$S(E) = N \int_{0}^{E/2} \hbar \omega \frac{d\sigma}{d(\hbar \omega)} d(\hbar \omega)$$

[1] Akkerman et al., NIM B, vol. 227, 2005.

BRIEF DESCRIPTION OF THE THEORY

- 6 cross-sections, allowing to distinguish 6 different ionizing interactions:
 - Plasmon excitation,
 - Ejection of an electron from the 5 Si electronic shells:

M1 (3s), M2 (3p), L1 (2s), L2 (2p) and K (1s) shells.

BRIEF DESCRIPTION OF THE THEORY

- All calculation details in:
 - A. Valentin, et al., "Geant4 physics processes for microdosimetry simulation: very low energy electromagnetic models for electrons in silicon", NIM B, vol. 288, pp. 66 - 73, 2012.
 - A. Valentin, et al., "Geant4 physics processes for microdosimetry simulation: very low energy electromagnetic models for protons and heavy ions in silicon", NIM B, vol. 287, pp. 124 - 129, 2012.

- No secondary production threshold energy.
- Discrete approach on the entire energy range: explicit simulation of all interactions on a step-by-step basis.

Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation results

Proton track simulation in Geant4

Conclusion and Perspectives

IMPLEMENTATION IN GEANT4: THE MUELEC EXTENSION

DESCRIPTION OF THE MUELEC EXTENSION

Based on the existing Geant4-DNA framework (see previous presentation), which uses the same initial theory (CDFT) in liquid water.

MuElec extension:

- In \$G4INSTALL/source/processes/electromagnetic/lowenergy
- 4 classes (2 processes, one model each)

Process	Interaction	Particle	Energy range
G4MuElecInelastic	Ionization	e⁻	16.7 eV - 100 MeV
		Proton Heavy ion	50 keV/amu - 1 GeV/amu
G4MuElecElastic	Elastic scattering	e⁻	16.7 eV - 100 MeV

2 additional classes: G4MuElecCrossSectionDataSet

G4MuElecSiStructure

— Tabulated total and differential cross sections in data files G4EMLOW6.32

[1] Akkerman et al., NIM B, vol. 227, 2005.

Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation results

Proton track simulation

Conclusion and Perspectives

SOME VALIDATION RESULTS

Inelastic cross-section

For more detailed discussion and validations: [1] A. Valentin, *et al.*, NIM B, vol. 288, pp. 66 - 73, 2012. [2] A. Valentin, *et al.*, NIM B, vol. 287, pp. 124 - 129, 2012.

Stopping power

For more detailed discussion and validations: [1] A. Valentin, *et al.*, NIM B, vol. 288, pp. 66 - 73, 2012. [2] A. Valentin, *et al.*, NIM B, vol. 287, pp. 124 - 129, 2012.

Stopping power

- Including relativistic corrections:
 - Up to 1 GeV/amu for protons and heavy ions
 - Up to 100 MeV for electrons

Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation results

Proton track simulation in Geant4

Conclusion and Perspectives

PROTON TRACK SIMULATION IN GEANT4

PROTON TRACK SIMULATION IN GEANT4

Comparison between the MuElec extension and existing Geant4 models (G4EmLivermorePhysics physics list).

As expected, main differences between models in the first 10 nm.

- As expected, main differences between models in the first 10 nm.
- Cumulated deposited energy:

- As expected, main differences between models in the first 10 nm.
- Cumulated deposited energy:

- As expected, main differences between models in the first 10 nm.
- Cumulated deposited energy:

- As expected, main differences between models in the first 10 nm.
- Cumulated deposited energy:

- As expected, main differences between models in the first 10 nm.
- Cumulated deposited energy:

Increasing difference with increasing energy, located in the first 2-3 nm.
First application results presented at NSREC (July 2012).

Brief description of the theory

Implementation in Geant4: The MuElec extension

Some validation results

Proton track simulation in Geant4

Conclusion and Perspectives

CONCLUSION AND PERSPECTIVES

- New Geant4 ionization models: "**MuElec**" extension.
- Explicit **generation of very low energy electrons**, down to 16.7 eV.
- Validated in comparison with data from literature:
 - e⁻: 50 eV 100 MeV
 - Proton/heavy ions: 50 keV/amu 1 GeV/amu
- Two published articles describing theory, Geant4 implementation, validation/verification results
- One application article in IEEE TNS, Dec. 2012.
- MuElec web page: Accessible from the web page of the LowE EM WG <u>https://twiki.cern.ch/twiki/bin/view/Geant4/LoweMuElec</u>

PERSPECTIVES: Extension to other materials

- Need for additional validation
- To be implemented in Geant4
- In contact with other teams to develop MuElec for additional materials: dielectrics (ONERA), gold (MGH)

Release of a user example and a dedicated physics constructor to show how to combine Standard EM or Low Energy EM processes with MuElec Physics processes (similar to **microdosimetry** example)

MuElec and G4EmLivermorePhysics tracks in TCAD simulations

- ⁷⁸Kr ions, different energies: 5, 10, 15 and 23 MeV/amu + 40 MeV/amu
 - Different transistor structures

Cea tc

TCAD SIMULATION

Cea TCAD SIMULATION

- MuElec and G4EmLivermorePhysics tracks in TCAD simulations
- Results as percentage difference between the two approaches:

TCAD SIMULATION

- MuElec and G4EmLivermorePhysics tracks in TCAD simulations
- Results as percentage difference between the two approaches:

