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Introduction

 The CDMS detectors are 

100mm diameter Ge crystals

 At 50 mK there are no free 

carriers

 Particle interactions create free 

carriers (e- / h+)

 The low density of free carriers 

and absence of background 

phonons make charge transport 

very complicated
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Simulation of CDMS test facility

 Cryostat provides some 

shielding from lab background

 Background simulation 

implemented using the Geant4

 Simulation captures all major lab 

background sources

 Right: Cryostat geometry at 

UMN surface test facility
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Test device spectrum

 Recorded spectrum 

using test device

 60 keV Am241 test 

source was used

 Both the 60 keV Am 

241 peak and a 1.46 

MeV K40 peak are 

clearly visible
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Above:Charge spectrum recorded under -8V 

bias (blue) with 60 keV (black-dashed) and 1.46 

MeV (red-dashed) features indicated

Surface gamma 

background
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Monte Carlo simulation of surface gamma spectrum

 Simulated and 

observed 

background 

spectrum are in good 

agreement (right)

 In order to capture 

broadening of K40 

line, need detector 

simulation
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Detector Monte Carlo simulation - I
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 Capture all event physics:

» e- / h+ propagation

• Carrier scattering

• Oblique propagation

• Impurity trapping

• Surface trapping

» Phonon 

• Focusing

• Down conversion

• Emission by carriers

Above: Accelerated h+ (green

trajectories) scattering and

emitting phonons (blue). Image

from Cabrera et al., 2010
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Detector Monte Carlo simulation - II
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 Conduction band is the 

energy vs. momentum 

relationship for e-

 The Ge conduction band is 

anisotropic at minimum

 Consequently e- mass 

appears anisotropic

Above: e- (green) propagating  in 

different conduction band minima. 

Image from Cabrera et al., 2010
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Detector Monte Carlo: spectral broadening
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 Left: Broadened K40 peak 

as observed (red) and 

simulated (blue)

 There is good agreement 

between simulation and 

data

 K40 line broadening due to 

variance in charge 

collection efficiency with 

event location
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Comparing simulated and recorded spectra
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 The figure shows good agreement between simulated (red) 

and recorded (blue) charge spectra
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Future developments: Channeling

Under development with Enrico Bagli, Ferrara University / INFN
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Channeling - I
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Bent crystals:

Particles can be 

forced onto curved 

trajectories using 

channeling

Straight crystals: 

Particles can be 

trapped between 

crystal planes. This 

increases their 

mean free path.
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Channeling - II
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400 GeV/c proton on Si
Nucl. Instr. Meth. Phys. Res. B 268 (2010), 

2655 

 Channeling increases 

mean free path

» Due to the particle 

spending more time far 

from the nucleus

 Channeling also 

increases ionization yield 

of heavy ion impacts

» Important for dark 

matter direct detection
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Channeling - III
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 Bent crystals could be 

used as baffles at LHC

» Guide particles away 

smoothly

 Periodically deformed 

crystals can generate 

synchrotron radiation

» Crystal fields are much 

bigger than any 

macroscopically 

generated fields
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Summary

 We have build a charge transport code for drifting e- /h+ 

pairs in cryogenic crystals
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 The code successfully reproduces CDMS detector 

performance

 Next step is the inclusion of channeling effects

 Wide range of applications: dark matter direct detection, Si 

trackers, x-ray focusing, beam shaping, energetic 

synchrotron sources...

 Strong international interest - Collaborating with Ferrara 

Univeristy under SPINNER Global Grant
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Backup slides
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Validating carrier propagation model

 Figure shows simulated 

e- drift velocity (red) and 

h+ drift velocity (green) 

as a function of drift field

 Drift velocities are in 

good agreement with 

experimental data

 This agreement indicates 

accurate oblique 

propagation and phonon 

emission models
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Cabrera et. al, arxiv:1004.1233v1
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Current and Projected Limits
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Mass x Time

 SuperCDMS Soudan will 

match current XENON 

100 limit

 SuperCDMS Lite will 

produce world leading 

low-mass limits

 SuperCDMS SNOLAB to 

improve limit by two 

orders of magnitude



Phonon detection in CDMS
Recoil event occurs in Germanium substrates, 76 mm diameter, 25 mm thick

Aluminum fins 300 nm thick absorb phonons

Fins connect to Tungsten transition edge sensors (W TESs)
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DAMA – with and without channeling

 Strong channeling 

effects can shift DAMA 

detection region

 Images from Savage et 

al., 2008, 
http://arxiv.org/abs/arXiv:0808.3607
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