

CODES

<u>co</u>mponent <u>de</u>gradation <u>s</u>imulation tool

A. Keating, S. Joyce, A. Zadeh, M. Pimenta, E.Daly, P.Gonçalves ESA Project: 18121/04/NL/CH

Outline

- Philosophy lacksquare
- SVFIT
- CODES: the top level tool
- Additional Models developed \bullet
- Conclusions \bullet

Philosophy

Top Level Framework

CODES Framework (web based)

sCODES

Detailed SVFIT: Published papers

• RADECS 2011

LET [MeV.cm²/mg]

8

Engineering tool: ISSI1 SEU XS Reconstruction

• Tests have been made for the Reference SEU Monitor and SEL monitor devices

Normalization

ц

LIP

According to the ICR

• Normalization is based on dMEREM/MARSREM normalization methods

- CODES pre-processor takes inputs for several ions' energy spectra
- Computes individual contributions for SEE rates
- Outputs the total rate prediction

CODES top level framework

- The framework is working properly under :
 - Windows Internet Explorer
 - Google Chrome
 - Firefox

• Both Microscopic and Statistical Modules

*G*4 SUW - 2013

15

eesa

Additional models developed: that might be implemented

With SVFIT

MBU diffusion model: Results

Ξ

_ I P

• Results published at RADECS 2011

Efficiency matrix from Laser maps

- The model of defining an efficiency matrix was developed for SVFIT
- Objective : robust module for extraction from **laser maps** the charge **collection efficiency**
- SVFIT and CODES : benefit from the inclusion under the user-friendly interface

Images from of Isabel Lopez

18

G4 SUW - 2013

Conclusion

- SVFIT, mCODES and sCODES were developed and integrated into a top level user friendly tool, with a web-interface
- Tests show the robustness of the tool: results consistency and good SV fit accuracy
- Results show that:
 - Very good device response function reconstruction with 3-5 ion cocktails
 - Accuracy is not dependent on statistics when using 5 ion cocktails
 - Run time using iterative fit capability with 5 ions and 6 possible geometries is of the order of 30 minutes, for SV thickness fit
 - Run time using SVFIT for 3 to 5 ions using two geometries for SV shape fit ranges btw 2-10 minutes depending on the statistics
 - mCODES results tend to be less dependent of user definitions than standard statistical methods and sCODES

Further Work

- Distribution of the tool under discussion
- Inclusion of ready-to-use developed models
- Incrementation of the Device Library
- Further models were investigated: TRL needs to be increased

