

Final Presentation

Network on Chip (NoC) for Many-Core System on Chip in Space Applications

December 13, 2017

COBHAM

Cobham Gaisler AB

Dr. ir. Gerard Rauwerda Gerard.Rauwerda@recoresystems.com

NoC round table

- Network-on-Chip (NoC) round table co-organized by ESA and CNES in 2009:
 - future SoC developments for space applications would benefit significantly from the use of NoC technology;
 - no NoC IP was generally available for the space community without entailing specific modifications or adaptations.

Contract details

- ITT No.: AO/1-8166/14/NL/LF
- ESA Contract No.: 4000115252/15/NL/LF
- Prime Contractor: **Recore Systems BV**, The Netherlands
- Sub-Contractor: Cobham Gaisler AB, Sweden

Cobham Gaisler AB

Our objectives

- To propose and define Network-on-Chip technology;
 - To propose hardening of the proposed NoC technology;
 - -To implement the NoC IP in VHDL (for SoC design);
 - -To implement functional SystemC (for early software development);
- To demonstrate the NoC IP capabilities implementing a reference design (use case);
- To validate the NoC IP using rad-hard CMOS target technology.

Results

- NoC IP technology for future System-on-Chip (SoC) available in ESA's IP core portfolio for the European space industry; and
- NoC IP validated with state-of-the-art space proven IP components for hardened ASIC process technologies.

Baseline Network-on-Chip

Recore's NoC already used in MPPB, XentiumDARE and SSDP

- Memory mapped communication protocol layer
- X-Y routing
 - -deadlock free

-design-time layout of tiles based on estimated traffic load

Baseline NoC (2/2)

- Before this activity:
 - NoC technology integrated and part of sub-system / SoC design
 - -Fault-tolerance not integral part of NoC
- After this activity:
 - -NoC IP available as stand-alone IP package
 - Including documentation, stand-alone testbench
 - -Fault-tolerance improvements

Baseline NoC extensions

- Adaptive XY-routing to provide data rerouting in the NoC
- Flit-level flow control
- Enable the insertion of EDAC on data links to increase robustness of flits

NoC architecture

NoC protocol – Transactions (1/3)

- Each transaction is built from a couple of flits of different types (e.g., header, payload, and tail):
 - -Interrupt / Signaling
 - -Single Read
 - -Single Write (no Acknowledgement reply)
 - -Block Read
 - -Block Write (no Acknowledgement reply)
 - Block Write with Interrupt reply

NoC protocol – Transactions (2/3)

NoC protocol – Transactions (3/3)

Fault Resilience

Investigations and extensions on baseline NoC

NoC layered architecture

Network-on-Chips layers and modules

M. Radetzki, et al., "Methods for Fault Tolerance in Networks on Chip", ACM Computing Surveys, 2013

(c) 2017 Recore Systems BV

Fault Model

Layer	Scope	Fault Type	Cause		
		Data Corruption			
Data-Link	Link & Router	Flit Insertion	SEU/SET, Stuck-at, crosstalk, etc.		
		Flit Loss			
		Misrouting	unresolved data-link layer error, routing		
Network	Channel		algorithm error, address mapping error		
		Broken-route	etc.		
		Packet Loss	unresolved data-link layer error,		
Transport	Connection		unresolved network laver error.		
		Packet Corruption	network interface error, etc.		
			,		

Fault Mitigation Techniques

		Fault Type							
Layer	Mitigation Techniques	Data	Flit	Elit Loss	Misrouting	Broken-	Packet	Packet	
		Corruption	Duplication	Filt LOSS		route	Loss	Corruption	
Data-Link	Error Detection and Correcting Codes (EDAC)	v v				\checkmark			
	Flit-Level Flow Control		$\sqrt{\sqrt{1}}$	\checkmark					
Network	Detour	\checkmark				\checkmark			
Transport	End-to-End Retransmission	\checkmark	\checkmark	\checkmark	\checkmark		\checkmark	\checkmark	
Transport	Packet-Level Flow Control				\checkmark		\checkmark		

 $\sqrt{}$ detection $\sqrt{}$ correction

• Mitigation techniques are proposed to be implemented in datalink and network layer.

NoC improvements

- Robustness
 - -Error handling, error signalling \rightarrow embedded as side-signals in flit
- Static error correction
 - Detour/rerouting of traffic in NoC \rightarrow also improves traffic load balance
- Transient error resilience
 - -FF hardening (e.g. ST65Space, DARE180) → synthesis support
 - Transient error detection / correction
 - EDAC mechanisms on data
 - CRC on payload
 - EDAC flit hardening

. . .

 \rightarrow instantiate & integrate with error signalling

NoC improvements Data rerouting in NoC (1/2)

NoC improvements Data rerouting in NoC (2/2)

• Detour LUT registers contain modified packet header information with intermediate router coordinates

NoC IP

NoC IP components and testbenches

NoC IP components

NoC router testbench

AMBA NI (MNI)

Master Network Interface:

- Initiates requests on NoC to Slaves
- Reacts on replies from Slaves
- Reacts on IRQ messages from NoC

AMBA NI (SNI)

Slave Network Interface:

- Reacts on requests from Master
- Initiates replies to Master
- Initiates IRQ messages on NoC

AMBA NI test bench

AMBA-NI functional verification

AMBA-NI IP Configurations

-Full with both AHB master and slave IF

- -Only AHB master IF (SNI NoC2AHB)
- -Only AHB slave IF (MNI AHB2NoC)
- AMBA-NI Verification Configurations
 - -IP testbench (released with IP package)
 - -IP NoC mesh test bench (in-house)
 - -SNI IP Block test bench (in-house)

NoC performance testing

NoC IP performance monitoring

NoC event monitor

- NoC monitor wrapped around each router; monitors
 - -Throuhput, latency,
 - -Error Events

NoC router testbench extension

Heatmap (no detour)

Heatmap (detour for traffic balance)

		out	723	in	out	683	in	
2		in	714	out	in	779	out	
	in	out		in	out		in	out
	780	763		502	595		741	608
	out	in		out	in		out	in
		out	614	in	out	590	in	
1		in	693	out	in	705	out	
	in	out		in	out		in	out
	in 706	out 700		in 374	out 616		in 716	out 582
	in 706 out	out 700 in		in <mark>374</mark> out	out 616 in		in 716 out	out 582 in
	in 706 out	out 700 in out	502	in 374 out in	out 616 in out	551	in 716 out in	out 582 in
0	in 706 out	out 700 in out in	502 643	in 374 out in out	out 616 in out in	551 516	in 716 out in out	out 582 in
0	in 706 out	out 700 in out in	502 643	in 374 out in out	out 616 in out in	551 516	in 716 out in out	out 582 in
0	in 706 out	out 700 in out in	502 643	in 374 out in out	out 616 in out in	551 516	in 716 out in out	out 582 in

Heatmap (detour broken link)

		out	683	in	out	556	in	
2		in	711	out	in	711	out	
	in	out		in	out		in	out
	720	758		339	639		685	512
	out	in		out	in		out	in
		out	816	in	out	622	in	
1		in	746	out	in	729	out	
	in	out		in	out		in	out
	in 908	out 770		in O	out 688		in 683	out 580
	in 908 out	out 770 in		in 0 out	out 688 in		683 out	out 580 in
	in 908 out	out 770 in out	287	in 0 out in	out 688 in out	551	in 683 out in	out 580 in
0	in 908 out	out 770 in out in	287 675	in 0 out in out	out 688 in out in	551 404	in 683 out in out	out 580 in
0	in 908 out	out 770 in out in	287 675	in O out in out	out 688 in out in	551 404	in 683 out in out	out 580 in
0	in 908 out	out 770 in out in	287 675	in O out in out	out 688 in out in	551 404	in 683 out in out	out 580 in

NoC reference system

FPGA reference NoC implementation and multi-core software use-case

EONEL

Ny

SpW

Router

Scalable 2D-mesh many-core architecture

- <u>SpaceWire element (0,0)</u>: connects GRSPW2 SpaceWire controller
- <u>Memory element (0,1)</u>: AHB slave memory
- <u>LEONEL (1,0)</u>: connects LEON3FT Processing Element
- <u>LEONEL (1,1)</u>: connects LEON3FT Processing Element

EONEL

DDR

Router

LEONEL: Leon3 Processing Element

Synthesis

- Target clock frequencies 180MHz, 500MHz and 1GHz for DARE180, ST C65SPACE and ST 28nm FD-SOI.
 - NoC router is estimated ~25 kGates (version with all directions connected)
 - -full AMBA Network Interface is estimated ~70 kGates (full version)
- Reference system available for Xilinx 7-Series and Virtex-5

 NoC Router: 2854 4637 Slices / 2316 3541 LUTs
 AMBANI: 4963 5996 Slices / 6910 7265 LUTs

Test case validation software

- The NoC reference system includes validation software
 - The test software uses a parallelized version of the OpenJPEG library to compress an image.
 - -The program is divided into one main control program that handles the sequential part of the code *running on LEONELO*, and
 - multiple worker programs that perform the parallel part of the work running on LEONEL1-LEONEL7.

Wrapup

Final results

ESA IP core availability

- NoC IP available as ESA IP core for ESA's own requirements.
- VHDL implementation of NoC IP
- SystemC model of NoC IP for early software development
- ASIC Synthesis scripts
- FPGA reference projects compatible with GRLIB

-with compression software use case

Conclusion

- The activity resulted in NoC IP:
 - -NoC router
 - -AMBA-to-NoC Network Interface (AMBANI)
- The IP has been integrated in a reference design
- The IP can be synthesized and targetted to different ASIC and FPGA technologies
- Performance tools are integrated in the NoC mesh testbench
- SystemC models for early software development are available

Ready for the next step? Heterogeneous many-core SoC

- Xentium VLIW DSP core in rad.-hard 65nm CMOS
 - Clock: 300 MHz
 - Performance: 1.8 GFLOPs/s
 - -NoC per link: 9.6 Gbit/s
 - Area: 1.1 mm²
 - 75% gates utilizationIncluding NoC interface
- Many-core SoC example
 - -48 Xentium processing tiles
 - -16 memory tiles
 - -60 NoC routers
 - 8×8 mesh

 \rightarrow 60 Giga MACs/s →90 GFLOPs/s

