A New Network Paradigm for the On-board Reference Architecture (OSRA-NET)

Marco Panunzio

Kindly Presented by: Christophe Honvault – ESA / ESTEC

Final Presentation Days – ESA / ESTEC

<reference>

© 2017 Thales Alenia Space

Outline

- SAVOIR and SAVOIR-FAIRE
- Society of the OSRA -NET Study
- Study organisation
- Sealer Analysis phase
- Salary Content in the terminal structure in terminal structure
- Semonstrator and Case Study
- 🔍 Case study

mplate: 83230347-DOC-TAS-EN-005

Najor results, lesson learnt and way forward

SAVOIR Avionics System Reference Architecture (ASRA)

- Reference avionics architecture (HW + SW vision)
 - Addressing the full platform avionics perimeter
 - Payload C/C, Data Storage, Telemetry, Routing and Security
- Stays as agnostic as possible w.r.t. technology and implementation choices
 - "Functional Reference Architecture"
 - Yet mapping to current reference implementation technologies are provided and discussed (e.g., 1553, SpW, CAN)

THALES ALENIA SPACE OPEN

femplate : 83230347-DOC-TAS-EN-005

SAVOIR On-board Reference Architecture (OSRA)

- Proposes a reference organisation of platform SW architecture in 3 layers
 - Component layer
 - Sofor Mission-specific software
 - Secution platform
 - Services For Mission-independent software (e.g., generic services)
 - Soriented to re-use
 - Interaction layer
 - To guarantee independence of components from execution platform
 - SAutomatically generated
- Comes with an associated Model-Driven Engineering process
 - Semi-formal modeling of SW architecture design
 - Increased abstraction of design + precise SW / SW interface definition
 - Automated code generation
- Supports both "Classical" and Time and Space partitioning execution platform

Assessment (2015)

- ASRA + OSRA could adequately describe existing avionics and onboard software
- Technology references in the technical notes is mostly related to currently flying technology
 - Se.g., 1553, SpaceWire, CAN in the OBC generic specification
- Strong **techno push** of new communication technologies (e.g., SpaceFibre, ARINC 664 P7, TTEthernet)
 - They require possible extensions of standards, methodologies, development practices and reference architectures (at avionics and software level)
 - Albeit they promise interesting advantages, what are the needs these technologies respond to? How is their design driven?
- Now to ensure that new communication technology developments are driven so as to best respond to the right mission needs?
- How to ensure that the SAVOIR reference architectures can take into account these new needs, possibly by leveraging on new communication technologies?

Goals of the OSRA-NET study

Solution To extend the concept of On-board Software Reference Architecture (OSRA) to new communication paradigms emerged in the past few years

- Such as those promoted by SpaceFibre, ARINC 664 Part 7 or TTEthernet
- Solution of a multi-node On-Board Software Reference Architecture (OSRA-NET)
- Sala perform an impact analysis on all relevant SAVOIR, ECSS and CCSDS documents

Survey Two major areas of work

- Sa The specification of the high-level communication system requirements for the OSRA
- The definition of an extended OSRA methodology and process for the analysis of communication needs
 - So as to confirm the feasibility of an architecture design spread on multiple nodes
 - Sto possibly refine such architectural design into OSRA components
 - S. To perform automated code generation and implementation

To prototype an implementation of the new OSRA-NET methodology and of a suitable communication stack on spaceborne hardware

- Sextension of reference OSRA Toolchain
- Secution of a case study demonstration of the new approach

Ref · · · ·	
Template : 83230347-DOC-TAS-	erence> 0347-DOC-TAS-

THALES	ALENIA	SPACE	OPE

Overview of the OSRA-NET TRP Study

R&D study (TRP) started in December 2015 and concluded in December 2017

🔍 Analysis phase

- SANAIysis of existing SAVOIR, ECSS, CCSDS standards
- Methodology definition
- Demonstrator technology selection
- Case study preliminary definition
- Specification phase
 - Specification of OSRA-NET communication requirements
 - Impact analysis on existing standards
 - Sconsolidated Case Study
- Semonstrator implementation and case study execution
 - Solution and extension for OSRA-NET Solution for OSRA-NET
 - SImplementation of prototype OSRA-NET communication stack
 - SIntegration of communication stack into OSRA toolchain / TASTE
 - Scase study modeling, implementation and execution
 - Section of case study results to full-scale spacecraft

7	13/12/2017	
	Ref.: <reference> Template : 83230347-DOC-TAS-EN-005</reference>	

_	
	THALES ALENIA SPACE OPEN

Study Organisation

🛸 ESA

- 🐧 Technical Officer: Christophe Honvault TEC-SWE
- 🛰 Thales Alenia Space (Study Prime)
 - 🖎 Analysis Phase Leader
 - Not Process and Methodology Definition
 - 🖎 Case Study Definition Leader
 - SRA-NET Communication Requirements Specification
 - 🖎 Impact Analysis Leader
 - No. Demonstrator and case study Support
 - * Extensions of the OSRA Component model (SCM)
 - Sector State Study results to full-scale spacecraft avionics

🛰 GMV

- 🖎 Analysis Phase Support
- 🖎 Case study definition Support
- 🐧 Impact Analysis Support for OSRA-related standards
- 😻 Demonstrator and case study Leader
 - Sector Strategies (Component model editor and SCM to TASTE transformation)
 - 1. Integrated communication and middleware architecture (with TASTE)
 - Case study execution

🛰 Teletel

- 😻 Technology selection Support
- Solution Implementation of prototype OSRA-NET communication stack
- Bright Ascension

Template : 83230347-DOC-TAS-EN-005

🔹 Analysis phase and Impact Analysis – Support for SOIS, MOS, CCSDS recommended practices

ъ		

Analysis of communication needs for current and future avionics

- Exomars TGO used as example of current avionics
- Star Tracker SW processing on platform OBC taken into account in the analysis
 - By using Iridium Next as example of operational avionics
- Analysis extended with needs for future science, EO, exploration missions

9

Analysis of communication needs for current and future avionics

- The analysis permitted to extract expected communication needs for devices of future avionics
 - Sected min-max message size
 - Frequency
 - Max Jitter / Latency
 - Need for timestamp

								Traffic des	cription						
	Equipment	Datatype	Max Cargo size (bits)	Frequency (Hz)	Period (ms)	bit rate	AOCS sensitivity	Jitterreg Value (ms)	uirement ROM	Latency (Value (ms)	ms) ROM	Other requirements	Qc5 level	Time stamp (8 octets)	Proposed Class of Comm
	Magnetometers	AQCS	12		125	100 bits/s	>1 ovde	1000	1 cycle	1000	1 cycle	order of max		No	
	Coarse Sun Sensors	ADCS	96	8	125.00	770bits/s	Low	10	1 cycle	10	1 cycle	order of mag		No	
	Gyro (Coarse/safe mode)	AOCS	\$76		125.00	4,6kbits/	1 cycle	2	1 cycle	2	1 cycle	order of msg		No	
	Oyro (fine-grained)	AOCS	576	32	31, 25	18kbits/	1 cycle	2	<1 Cycle	2	< 1 Cycle			Yes	
	Gyro (future)	AOCS	576	82	\$1,25	18kbits/s	1 cycle	2	<1Cycle	1	< 1 Cycle			TED	
	Star-Tracker (Smart)	ADCS	8194 - 32777	8	125,00	65 to 262 kbits/s	1 cycle	1	<1 Cycle	10	1 cycle			Yes	
	Star-Tracker (Smart)	AOCS-Geo	8194 - 32777	8	125,00	65 to 262 kbits/s	>1 cycle	2	1 cycle	10	>1cycle			TED	
	Star-Tracker	AOCS- Agility	8194 - 32777	30	35, 35	245 to 983 kbits/s	<<1Cyde	0	<<1Cycle	1	<<1 Cycle			Yes	
STORE	Camera - High Res.	ADCS- Rendez-yous	41943040	8	125,00	335 Mbits/s	1 cycle	30	<1Cycle	100	1 cycle			Yes	
Se	Camera	ADCS - Nav. Cam	10485760	8	125,00	84 Mbits/s	>1 cycle	300	>1cycle	100	>1cycle			Yes	
	Camera	AOCS - Multi stage (1kHz)	1000000	1000	1.00	1000 Mbits/s	>1cycle	100		100				Yes	
	IR Spectrum Camera	ADCS	2457600	1	3000,00	2,5 Mbits/s	>1 cycle	300		100				Yes	
	Revised reserve	Various, closed loop	Mission	100	10.00	Mission	or 10 de	Mission	or 10 de	Mission	rr10rh			780	
	Tachometer	AOCS	30720	8	125,00	245 kbits/s	>1 cycle	10	>1cycle	100	>1orde			No	
	Tachometer	AOCS- Agility Multistage	be greater than actual value	100	10,00	TBD	1 cycle	1	<1Cycle		<1Cycle		1	Yes	
	CM65	AOCS	10000	1	1000,00	10 kbits/s	1 cycle	10	1 Cyde	10	1 Cycle			Yes	
	0.00	ADCS	14	1	1000,00	10 kbits/s	1 cycle	0,001	<<10yde	0,001	<<1 Cycle			Yes	
	Magneto-Torquer Bars	AOCS	12	0,125	8000,00	neglectable	1 cycle	500	<1Cycle	8000	1 cycle		1 or 2	No	
	Thrusters (x28)	ACOS	2800		125.00	22kbits/	<1 cycle	Mission dependent		Mission dependent			1 or 2	No	
5	Thrusters - chemical	4005	2800	26	3.91	720kibits/s	<1 orde	01	s10cle	01	x10vde	001055	2	170	
No.	Thoustant allastrical	4005		No har	dconstraint	s due to propulsion	cycles: sever	al minutes and	the imapct or	ntrajectory isnot im	mediate		1072	780	
Å0	The Galler ar Herecul (CB)	PR.03											1012	Yes	
	Reaction Wheels	AOCS	30720	8	125,00	250kbits/s	1 cycle	10,00	<1 Cycle	a 10,00	1 cycle	Notosofma	1 or 2	for some	
												End of process in			
_	Reaction Wheels (high speed)	ACCS-Agility	30720	100	10,00	3 Mbits/s	1 gyde	0,50	<1 Cycle	1,00	<10x8	samecycle	2	T6D	
	Spectrometer	Science	2,005-06	10	100,00	2000 Mbits/s	N/A	N/A	N/A	N/A	N/A		0 or 1	No	
Payloa	UltraHD Camera (4K)	Science	9,955-07	10	100,00	2000 Mbits/s	N/A	N/A	N/A	N/A	N/A		0 or 1	No	
	X Ray detector	Science	1,806+10	0,0303	39008,30	545Mbits/s	N/A	N/A	N/A	N/A	N/A		0 or 1	No	4
	Di perimental value.	1													

Experimental value, Approximation

© 2017 Thales Alenia Spac

ThalesAlenia

OSRA-NET Communication System Requirement Specification

- Provides generic requirements related to the communication needs for avionics systems currently under development and that could be foreseen in future missions
- It can therefore be considered as a common-core of requirements that is expected to be relevant to a sizeable range of future missions

Addresses

- Capability requirements (Communication needs requirements, QoS)
- Communication infrastructure requirements
- Serror handling and FDIR
- System-level communication requirements
- Reviewed at study level and separately by SAVOIR-UNION Working Group
- SAlready getting attention in the community!
 - Se.g., mapping to SpaceFibre performed by ESA / University of Pisa, ADCSS 2017
- Securrently being transformed in a SAVOIR document by ESA

11	13/12/2017
11	Ref.: <reference> Template : 83230347-DOC-TAS-EN</reference>

THALES ALENIA SPACE OPEN

TH3: CSRR communication network winter by Resonation Andren Charel Resonation Directed Resonation ORRANET Project Manager Marcine Russic ORRANET Pr	"A New	Network Paradigm Reference Archite (OSRA-NET	for the On-board cture"	'
Written by Responsibility + handmitten inguitate in a slottenic surfiles to Adren Chantel Brice Delandrea Head of Avorius RAD and feasibility studies department Marco Paranzoo OSRA-NET Project Manager Worked by OSRA-NET Project Manager Marco Paranzoo OSRA-NET Project Manager Approved by OSRA-NET Project Manager Decomposition constraints in paragement cyster. Decomposition constraints in paragement cyster.	TNO	3: OSRA communica specification	ation network n	
Adren Charet Aversics RAD and heats RAD and	Written by	+ handariten sin	Responsibility	workflow too
Bree Delandrea Head of Avorice RAD and Reabbility studies department Marco Paranzoo OSRA-MET Project Manager Marco Paranzoo OSRA-MET Project Manager Approved by Marco Paranzoo OSRA-MET Project Manager Approved by Marco Paranzoo OSRA-MET Project Manager Approved by Marco Paranzoo OSRA-MET Project Manager Marco Paranzoo OSRA-MET Project Manager Marco Paranzoo OSRA-MET Project Manager Marco Paranzoo OSRA-MET Project Manager Marco Paranzoo Delandrea Marco Paranzoo OSRA-MET Project Manager Marco Paranzoo Manager Marco Paranzoo OSRA-MET Project Manager Marco Paranzoo Merco Paranzoo Mer	Adrien Charlet	Avionics R&D architect		1001000
Marco Panarazio CORA-NET Project Manager Verrefe by Cora-NET Project Manager Marco Panarazio Cora-NET Project Manager Maro Panarazio Cora-NET Project Manag	Brice Dellandrea	Head of Avonics R&D a	nd feasibility studie	s departmer
Verified by CSRA-NET Project Manager Approved by CSRA-NET Project Manager Motion Parimozo CSRA-NET Project Manager Autoria Parimozo CSRA-NET Project Manager Approved by CSRA-NET Project Manager Approved by CSRA-NET Project Manager ThatesApprox Display CSRA-NET Project Manager CSRA-NET Project Manager	Marco Panunzio	OSRA-NET Project Mar	ager	
Marco Panarcio OSRA-NET Proyect Manager Aperverse fly OSRA-NET Proyect Manager Marco Panarcio OSRA-NET Proyect Manager Aperverse visites a led within the eccentration management ryster. Thatestare Display Display Operation Statement of the eccentration of the eccentration management ryster. Thatestare Display Display Operation Statement of the eccentration of the eccentration of the eccentration management ryster.	Verified by			
Approved by Natico Faturizio Approve netices a lard able the descentiation nanopered splite. ThatesAprox Dight Scientific Science	Marco Panunzio	OSRA-NET Project Mar	lager	
Noro Prantzo CISNA-NET Project Manager Agreed existence is but which the disconstruies management system. ThaterAkerto Dight Construction for the second system of the second sys	Approved by			
ThateWork bright accension State to the second state of the secon	Marco Panunzio	CISRA-NET Project Mar	hager	
New rate base a supervise the second of the second data with the second data of the second se	ThalesAlenia C	iscension 9	₩ tele	etel

OSRA-NET methodology

- System / Avionics modeling
 - SModeling languages such as Capella or SysML
 - Solution analysis Coarse-grained communication analysis

Oriented to

- Preliminary communication sizing
- Avionics system feasibility

SOBSW modeling

- SLeveraging on e.g., the OSRA component model
- Solal: Enable Fine-grained communication analysis
- Capitalise on avionics modeling effort => coherent model transformation is required
- Sefinement of communications with knowledge of
 - Scommunication patterns used at OBSW level
 - S.E.g., send, request / response, etc...
 - SOverhead due to full communication protocol stack
 - Hardware Comm Protocol + SW comm protocols + software real-time architecture

OBSW modeling

Demonstrator infrastructure development

Development of an ARINC 664 P7 SW stack for spaceborne technology
 ARINC 664 P7 over SpW physical medium
 For RASTA LEON2 and iSAFT PVS (SpW EGSE)

Development of extensions to the OSRA component model and editors

Scommunication properties, Virtual Channels, new hardware entities...

- **S** To support the same new modeling concepts
- **S** To integrate the ARINC 664 P7 Communication Stack

Severification tests and Integration Tests (Communication Timing)

NOT A COLOR MODEL & ADMIN.

	Ref.:	<reference></reference>
	Template	: 83230347-DOC-TAS-EN

THALES ALENIA SPACE OPEN

Overall case study process flow

Solution of a small-scale yet representative case study

- Not representative of functionality but of communication traffic
- Star Tracker with processing on OBC, Reaction Wheels, Payload Science TM, PF HK, PL HK
- Case study modeling with the OSRA(-NET) Component model + code generation with TASTE
- Deployment of case study on final demonstrator configuration
 %1 RASTA board as PF, 1 RASTA board as PL, 1 iSAFT PVS as pseudo-RTU
- Second study execution and verification report

Sextension of results via analysis to full-scale spacecraft avionics

14

13/12/2017	
Ref.: <reference></reference>	
Template : 83230347-DOC-TAS-EN-005	

THALES ALENIA SPACE OPEN	

Overall results

SMajor results

- An analysis phase to gather communication needs of current and future avionics
- SImpact analysis on ASRA, OSRA, generic OBC specification, SAVOIR MASAIS, etc...
- SINT COMMUNICATION
- SRA-NET methodology
- Sextension of OSRA metamodels, and toolchain
- Implementation of ARINC 664 P7 over SpW network
 - 🛰 On RASTA LEON2 + iSAFT PVS
- Sector Prototype demonstrator with small-scale yet representative case study

Overall results

SLessons learnt and future work

Seasibility and performance of complex communication stack in SW

- Take advantage of future heterogenous target such as the Compact Reconfigurable Avionics (multicore processor + reconfigurable FPGA)
- Senefit from HW / SW algorithm co-design!
- Communication analysis engines
 - SAnd relationship with avionics and OBSW modeling process
- Setailed communication protocol information for fine-grained protocol overhead
- Recommendations for improvement of TASTE middleware real-time architecture
- Section Advisories modeling to SW modeling transformation bridges (e.g., Capella to OSRA SCM)

Curious? Want to know more?
 You are kindly invited to the complete final presentation of OSRA-NET
 To be held in the next TEC-ED / TEC-SW FPD session! (*)

Nay 2018

(*) Weather permitting...

THALES ALENIA SPACE OPEN

