High Performance Avionics Solution for Advanced and Complex GNC Systems for ADR

TEC-ED & TEC-SW Final Presentation Days ESA-ESTEC, December $12^{th} 2017$

David Gonzalez-Arjona (dgarjona@gmv.com) Gianluca Furano (gianluca.furano@esa.int)

© GMV, 2017 Property of GMV All rights reserved

HIPNOS Consortium

GMV expertise in ADR, Image Processing and Avionics Architecture for space finds the perfect complement in our collaborators:

NTUA who will provide the necessary expertise on FPGA and VHDL modelling, vectorial parallelization of computer-vision algorithms **FORH** who will provide the necessary and expressly required expertise on computer vision and pose estimation algorithms

UNCLASSIFIED INFORMATION

SCOPE & OBJECTIVES

Development of a representative HW/SW solution for a high-performance processing platform for Active Debris Removal missions. Implement COTS-based solution as Demonstration of the activity

- study/define the high-level architecture of a high-performance computing system for space avionics for GNC in ADR missions
- design one high-accuracy & high-complexity chain of Computer Vision algorithms to support the ADR scenario of e.Deorbit
- select the most appropriate acceleration platform in terms of speed, power, rad-hardness, mass/size, flexibility, future trends
- accelerate the CV algorithms on FPGA or GPU, or DSP, or multi-core CPU to achieve the high-speed processing required in ADR
- develop and demonstrate a preliminary, proof-of-concept system (by using COTS components and high-definition videos) with a representative ADR use-case.
- present the feasibility of implementing demanding algorithms with real-time performance on future space-grade platforms

Doc. Code

GMV AUTONOMOUS NAVIGATION IN SPACE

Hardened Devices protected versus: Radiation Solar Pressure Electromagnetic Waves Vibrations (launching environment) Wide temperatura range

- Hard/Impossible to repair devices (up there): Reliability is a must
- Autonomy is a key factor
 Independent Systems
 Huge delay/latency in Ground-Spacecraft
 communication
- Limited power consumption on board
- Mass and volumen shall be minimized
- Design and implementation of Fault-Tolerance systems
- Critical, Precise and Deterministic systems in Hard Real-Time applications
- Extensive and intensive Validation and Verification
- Ad-hoc projects for each mission: Nobody went there before → how to create representative environment, images, conditions?

ADR SCENARIO REQUIREMENTS

High-demanding on-board space applications which cannot rely on common space-grade avionics

- Large ESA owned dead satellite, uncooperative, non-passivated \rightarrow e.Deorbit \rightarrow ENVISAT
- RdV: assume a hold point at a distance from the target of 100m and another at 50m
 - Camera-based rendezvous until 100m
 - Forced motion approach or safe orbit approach to 50m
 - Spin synchronization
 - Approach in the target body frame to terminal hold point
 - Capture at 2m: "Capture Phase" shall assume a hold point at a distance of 2 m
- The chaser shall be able to perform relative navigation w.r.t. the target object during the full target orbit anytime of the year, fully autonomous without any ground intervention
- A camera sensor plus a relative trajectory + attitude propagation.
 LED based spotlights can provide illumination for the rest of the approach.
- Trade-offs (performance, power consumption, image resolution, arithmetic precision, mass/size budget, accuracy,...)
- Consider the most representative and computationally demanding computer vision and image processing algorithms (target 10fps 1024x1024 pixel images)

Launch mass:	8,211 kg
Dimensions:	2.5 × 2.5 × 10 m
Orbit:	LEO 2º/s spin

AVIONICS PROCESSING REQUIREMENTS

Derived requirements for the processing board of HIPNOS based on e.Deorbit MSRD and relevant projects

Electrical Power

- e.Deorbit MSRD: nothing specific (MIS-59 = mean and peak power TBD)
- similar projects: GMV-NEOGNC2-IP, GMV-CAM-PHOR-VBN
- relevant solutions with FPGA (NASA): 2-5 Watts for Zynq boards, and 5-20 Watts for multi-board SpaceCubes
- requirement = 10 Watt (TBC)

Mass/size

- e.Deorbit MSRD: nothing specific (MIS-60 = mass TBD Kg)
- similar projects: GMV-NEOGNC2-IP, GMV-CAM-PHOR-VBN
- relevant solutions with FPGA (NASA): <100gr for Zynq boards, and 1.4-5.8Kg for multi-board SpaceCubes (+housing)
- relevant solutions with FPGA (NASA): 1U or 17x17x5cm for Zynq boards, 1U up to 13x18x23cm for V5QV (+housing)
- requirement = 0.5 Kg (TBC)
- requirement = 20x20x10 cm^3 (TBC)
- Processing power (projected to CPU)
 - e.Deorbit MSRD: nothing specific
 - similar projects: extrapolated IP results from [SEXTANT] for high-rate high-definition images show 100x more power
 - requirement = 15.000 MIPS (TBC)
- Interfaces
 - e.Deorbit MSRD: nothing specific
 - requirement = sensors-board : space-qualified link for 2Mpixel image at 10fps (TBC)
 - requirement = OBC-board : TBD high-speed bus (data/image) + TBD low-rate bus (control)

HIPNOS, TEC-ED & TEC-SW Final Presentation Days 2017/12/12 Page 8

ADR SCENARIO DEMONSTRATION

- ENVISAT sequences were generated using ASTOS camera simulator
- 2 trajectories for ENVISAT:
 - Observation phase: chaser stands about 50m from target
 - Approaching phase: From 30m down to 10m

- PROBA-2 sequences were generated using commercial rendering SW including the Earth in background
- 1 trajectory for PROBA-2
 - Spin Synchronization maneuvers: Chaser synchronizes rotation with target
 - Later approaches to the target

ENVISAT (up) and PROBA-2 (down)

Page 9

BC

- STATE-OF-THE-ART
 - SPACE-GRADE
 - COTS

GR712RC Dual-Core SOC Leon3-FT	Space-Qualified	100 MHz	140-200 DMIPS	3-6 Watts	
RAD750 PowerPC Space-Qualified		200 MHz	400 DMIPS	15-20 Watts	
Intel Core i5-2500K 4-core (2011)	COTS	3,300 MHz	83,000 DMIPS	73-100 Watts	

HIPNOS, TEC-ED & TEC-SW Final Presentation Days 2017/12/12

Page 11

- STATE-OF-THE-ART
 - SPACE-GRADE
 - COTS
- NEXT-GENERATION AVIONICS
 - SPACE-GRADE
 - COTS

GR712RC Dual-Core SOC Leon3-FT	Space-Qualified	100 MHz	140-200 DMIPS	3-6 Watts	
RAD750 PowerPC Space-Qualified		200 MHz	400 DMIPS	15-20 Watts	
Intel Core i5-2500K 4-core (2011)	COTS	3,300 MHz	83,000 DMIPS	73-100 Watts	

R740 Quad-Core SOC Space-Qualified eon4-FT		250 MHz	425-1700 DMIPS	2-7 Watts	
RAD5545 64-bit Quad-core PowerPC	Space-Qualified	800 MHz	5200 DMIPS	18-24 Watts	
P4080 Octo-core board Latch-up Inmune Virtex-5 Voting System		1,500 MHz	27,600 DMIPS	>45 Watts	

HIPNOS, TEC-ED & TEC-SW Final Presentation Days 2017/12/12

Page 12

- STATE-OF-THE-ART
 - SPACE-GRADE
 - COTS
- NEXT-GENERATION AVIONICS
 - SPACE-GRADE
 - COTS
- FIRST GENERAL ITERATION:
 - CONVENTIONAL SPACE-GRADE PROCESSORS
 - SPACE-GRADE SRAM-BASED FPGAs
 - DSPS
 - GPUS
 - MULTICORE-MULTIPROCESSOR
 - SYSTEM-ON-CHIP

GR712RC Dual-Core SOC Leon3-FT	Space-Qualified	100 MHz	140-200 DMIPS	3-6 Watts	
RAD750 PowerPC	Space-Qualified	200 MHz	400 DMIPS	15-20 Watts	
Intel Core i5-2500K 4-core (2011) COTS		3,300 MHz	83,000 DMIPS	73-100 Watts	

GR740 Quad-Core SOC Leon4-FT	740 Quad-Core SOC Space-Qualified		425-1700 DMIPS	2-7 Watts	
RAD5545 64-bit Quad-core Space-Qualified PowerPC		800 MHz	18-24 Watts		
P4080 Octo-core board	Latch-up Inmune Virtex-5 Voting System	1,500 MHz	27,600 DMIPS	>45 Watts	

HIPNOS, TEC-ED & TEC-SW Final Presentation Days

UNCLASSIFIED INFORMATION

- STATE-OF-THE-ART
 - SPACE-GRADE
 - COTS
- NEXT-GENERATION AVIONICS
 - SPACE-GRADE
 - COTS
- FIRST GENERAL ITERATION:
 - · CONVENTIONAL SPACE-GRADE PROCESSORS
 - SPACE-GRADE SRAM-BASED FPGAs
 - DSPS
 - GPUS
 - MULTICORE-MULTIPROCESSOR
 - SYSTEM-ON-CHIP

GR712RC Dual-Core SOC Leon3-FT	Space-Qualified	100 MHz	140-200 DMIPS	3-6 Watts	
RAD750 PowerPC	Space-Qualified	200 MHz	400 DMIPS	15-20 Watts	
Intel Core i5-2500K 4-core (2011) COTS		3,300 MHz	83,000 DMIPS	73-100 Watts	

GR740 Quad-Core SOC Leon4-FT	Space-Qualified	250 MHz	425-1700 DMIPS	2-7 Watts	
RAD5545 64-bit Quad-core Space-Qualified PowerPC		800 MHz	5200 DMIPS	18-24 Watts	
P4080 Octo-core board	Latch-up Inmune Virtex-5 Voting System	1,500 MHz	27,600 DMIPS	>45 Watts	

HPDP manycore Virtex5-QV	MPPB/SSDP multi-dsp board RTG4	RC64 CEVA DSP manycore 500x faster GR712 RTAX, ProAsic3, CTOS SmartFusion	TI SMV320C6727B C67x + VLIW DSP BRAVE: NG-MEDIUM NG-LARGE (+ARM) NG-ULTRA (+ARM)	ARM (4-core) + TMS320C66x (8-core C66x DSP) Zynq7000 SoC Zynq UltraScale+	I/Fs	HW Accelerator	
Myriad Movidius	LPGPU rad-tolerant	NVIDIA GPU	SYSTEM ON CHIP				_

HIPNOS, TEC-ED & TEC-SW Final Presentation Days 2017/12/12

Page 14

UNCLASSIFIED INFORMATION

BENCHMARKING

- done extensive testing/evaluation
- with both in-house & literature work
- for all processor categories
- for computer vision tasks
- focused mainly (but not only) on performance and Watt
- in total, more than 30 platforms and 10 benchmarks

		In-house development & testing	Literature survey
	Š	Xillinx Virtex6 VLX240T-2,	Altera Stratix III E260, Xilinx Virtex 5QV
	24	Zynq7000 (Z7020, Z7045)	Virtex4 VLX100, Virtex6 VSX475T, Zynq7000
us	~	desktop Intel i 5-4590, laptop i 3-4010 $\rm U$	desktop: Intel i7-3820, AMD FX-8120
orr	ã	embedded: ARM CortexA9, Intel X1000	embedded ARM CortexA15
atf	\sim	space: LEON3, OCE E698PM (LEON4)	space-grade BAE RAD5545
\mathbf{pl}	Ś	Nvidia GeForce GTX 670,	Nvidia GTX 980Ti / 650Ti / 295, Tesla C2050,
	Î	GTX 680, GTX 960	mobile: Nvidia Tegra K1/X1, ARM Mali-T760
	Ŷ,	space-grade Xentium MPPB	TI multi-core TMS320C6678 and 66AK2H14,
	Q,	embedded multi-core Myriad2	1-core C674x, 64-core RH RC64 (MACSPACE)
	S	2D convolutions $(5x5 \text{ to } 11x11),$	2D convolutions and SAD (up to $25x25$),
hmar		Harris-corner & Canny-edge detectors,	Harris-corner & Canny-edge detectors,
		Stereo Matching, Hyperspectral search,	Stereo Matching, Image Denoising and
	enc	Pose Estimation (incl. feature detection,	Block Matching, Hyperspectral imaging, etc.
þe		description, matching), Super-Resolution	(plus nominal DMIPS and MFLOPS figures)

- clouds of results, vary per platform & benchmark (peculiarities of computational model, chip node/size, etc.)
- challenge tackled methodically, comparison converged in big consistent picture

COMPARISONS

1st ITERATION (BIG PICTURE)

- CPUs worst performance/Watt
- FPGAs best perf/Watt (10x)
- FPGA vs desktop-GPU, not far w.r.t. speed, but w.r.t. power...
- mobile-GPU vs desk-GPU, trade 10x performance for Watt
- mob-GPU vs many-DSP, similar performance and power

	And Charles Concerned	10000000000000000000000000000000000000	And Color	thodie Croc	in the second se	equit.	200 COL
Throughput	0.2-1.7	0.5-2	20-100	50 - 150	50 - 240	300-1460	200-2000
Power (W)	1-18	1-2	20-90	6-10	1-10	2-10	70 - 195
Perf/Watt	0.1-0.6	0.25 - 2	0.5 - 1	8 - 15	12 - 50	60 - 250	5 - 25

COMPARISONS

1st ITERATION (BIG PICTURE)

- CPUs worst performance/Watt
- FPGAs best perf/Watt (10x)
- FPGA vs desktop-GPU, not far w.r.t. speed, but w.r.t. power...
- mobile-GPU vs desk-GPU, trade 10x performance for Watt
- mob-GPU vs many-DSP, similar performance and power

	And Contraction of the second	Contraction of the second seco	Best Charles	to bio CA	itig the state of	R. C.	200 Log
Throughput	0.2-1.7	0.5 - 2	20-100	50 - 150	50 - 240	300 - 1460	200-2000
Power (W)	1-18	1-2	20-90	6-10	1-10	2-10	70-195
Perf/Watt	0.1-0.6	0.25 - 2	0.5 - 1	8-15	12 - 50	60 - 250	5 - 25

8-core DSP

(66AK2H14)

1200 MHz

70 - 240

 $\simeq 10$

7 - 24

FPGA

(Zyng7045)

200-300 MHz

430 - 1460

4 - 6

110 - 240

2nd ITERATION (BEST 28nm COTS)

• SoC are most useful for acceleration

• DSPs are closing in (vs FPGA), but

Zynq 10x perf vs Myriad2 for HD
Zyng 10x perf/W vs TI-C66x

• Myriad2 lowest power (1W)

• Zynq highest speed (with slow clk)

> selected: Zynq7000 on MMP board (6x10cm² 65gr), also due to connectivity & rad mitigation opportunities

4-core LEON4

(E698PM)

600 MHz

< 20

 $\simeq 2.8$

< 7

Performance

Power (W)

Perf/Watt

12-core VLIW

(Myriad2)

600 MHz

50

1

50

desktop GPU

(GTX 670/680/960)

> 1 GHz

600 - 1800

> 70

< 25

EVELOPMENT BNIPNOS

POSE ESTIMATION PRINCIPLE

- Edges are suitable for tracking weakly textured objects as they
 - are robust to noise and illumination/viewpoint changes
 - can be accurately and rapidly localized in images
- RAPiD (Real-time Attitude and Position Determination) is the archetypal edge-based tracker
- A RAPiD-like tracking algorithm was developed in HIPNOS
- The developed algorithm imposes no constraints on the employed 3D model

2017/9/22 Page 19

UNCLASSIFIED INFORMATION

POSE ESTIMATION ALGORITHM

- A model-based, monocular 3D tracking algorithm based on edges
- Input: sequence of images + approximate initial 3D pose and object mesh mo
- Algorithm:
 - 1. Intensity edges are detected in an input image
 - 2. The model is rendered (i.e. projected) with the approximate 3D pose; visible depth edges are detected in the projection
 - 3. Depth edges are matched with intensity edges, searching in directions parallel to the depth gradients
 - Perpendicular matches are used for estimating the incremental (i.e., frame to frame) pose; outliers are filtered out in a two-level robust regression framework (LMedS + M-estimation)
 - 5. Incremental pose is integrated with the approximate pose to yield a new pose estimate
 - 6. The process repeats with a new frame and the pose estimate as the approximate pose
- "frozen" version: Depth edges found with Canny, latter work has led to a more robust scheme

2017/9/22 Page 20

UNCLASSIFIED INFORMATION

POSE ESTIMATION DEVELOPMENT 1/2

- **Developed** a model-based, monocular 3D tracking algorithm based on edges (edges are robust to noise and illumination changes; can be accurately and rapidly localized in images)
- Inputs object mesh model (+ approximate initial 3D pose) and the sequence of images

Algorithm:

- 1. Intensity edges are detected on the input image (with Canny)
- 2. The model is rendered (i.e. projected) with the approximate 3D pose (of the previous state); visible depth edges are also detected in the projection (rendered model)

HIPNOS, TEC-ED & TEC-SW Final Presentation Days 2017/12/12

Page 21

Doc. Code

POSE ESTIMATION DEVELOPMENT 2/2

• Algorithm (cont'd):

- 3. Depth edges are matched with intensity edges, searching in directions perpendicular to the depth edges
- 4. Perpendicular matches are used for estimating the incremental (i.e., frame to frame) pose; outliers are filtered out in a two-level robust regression framework (LMedS + M-estimation)
- Incremental pose is integrated with the approximate pose (previous state) to yield a new pose estimate (current state) and the process repeats with a new frame

DEVELOPMENT **DESIGN OVERVIEW**

PLATFORM

- System-on-Chip Zyng (MMP module + baseboard)
 - 2x CPU : one dedicated to the CV task
 - FPGA : to accelerate selected CV functions •
- comm. : over AXI4, with DMA for ~3Gbpsdeploy Ubuntu OS with Xillybus (for fast prototyping)
- *sdcard* for pre-stored images (imaging not analyzed)

2017/12/12 Page 23

HIPNOS, TEC-ED & TEC-SW Final Presentation Days

DEVELOPMENT **DESIGN OVERVIEW**

PLATFORM

- System-on-Chip Zyng (MMP module + baseboard)
 - 2x CPU : one dedicated to the CV task
 - FPGA : to accelerate selected CV functions
 - comm. : over AXI4, with DMA for ~3Gbps
- deploy Ubuntu OS with Xillybus (for fast prototyping)
- *sdcard* for pre-stored images (imaging not analyzed)

PROFILING

- on ARM Cortex-A9 @ 667MHZ (C/C++, single-threaded)
- time/frame = 1-1.8 sec (~ ½ FPS, depends on distance)
 90% for pixel-based processing (Rendering, Canny)
 for few functions, achieved ~3x via NEON SIMD, but goal=10-50x

DEVELOPMENT **DESIGN OVERVIEW**

PLATFORM

- System-on-Chip Zyng (MMP module + baseboard)
 - 2x CPU : one dedicated to the CV task
 - FPGA : to accelerate selected CV functions
 - comm. : over AXI4, with DMA for ~3Gbps
- deploy Ubuntu OS with Xillybus (for fast prototyping)
- sdcard for pre-stored images (imaging not analyzed)

PROFILING

- on ARM Cortex-A9 @ 667MHZ (C/C++, single-threaded)
 - time/frame = 1-1.8 sec (~ ½ FPS, depends on distance)
 90% for pixel-based processing (Rendering, Canny)
- for few functions, achieved $\sim 3x$ via NEON SIMD, but goal=10-50x

HW/SW PARTITIONING

- base on methodology, consider multiple requirements per function ٠ (time, memory, arithmetic, SW complexity, communication,...)
- roughly: pixel/edge processing on FPGA, algebra equations on CPU
- 94–97% of computation accelerated on FPGA

HW ARCHITECTURE, VHDL

- parameter tuning and customization to given problem
 - tests to fix edge thresholds, number of control points, word-lengths, etc...
 - analysis to transform floating- to fixed-point arithmetic (used a mix of both)
- memory optimizations
 - render image in 4 bands (reuse RAMBs), sliding windows
 - process data on-the-fly, avoid on-chip buffering

Page 26

DEVELOPMENT **HW ARCHITECTURE, VHDL**

- parameter tuning and customization to given problem
 - tests to fix edge thresholds, number of control points, word-lengths, etc...
 - analysis to transform floating- to fixed-point arithmetic (used a mix of both)
- memory optimizations •
 - render image in 4 bands (reuse RAMBs), sliding windows
 - process data on-the-fly, avoid on-chip buffering
- parallel architecture design
 - deep pipelining on pixel-basis (flow in dozens of stages)
 - serial-to-parallel structures, systolic arrays, trees,... function/unit replication (e.g., 4-pixel rendering) multiple operators for single math formula evaluation
- parametric VHDL coding, modular & gradual integration ٠

init Ri Init Ri Init Init Ri Init Init Init Ri

Triangle Pts C

Min & Max X

Min & Max Y

Perspective

Projection

Dual Port

Memories

1/0

Controller

Perspective

Projection

Find Borders of Triangle

Is In

Band Generate Pixels Inside Borders

Triangle Pts B

ories

Triangle_pts

Triangle

Pts A

Perspective

Projection

RESULTS

RESOURCES

- tested on biggest Zynq7000 FPGA (xc7z100-2 of MMP)
 - 36% LUTs, 48% DSPs, 77% RAMBs, Fmax>200MHz
 - most demanding is Renderer (94% logic of design)
 power≈4.5W (peak 9W) (CPU@667MHz, PS@200MHz)
- rough estimations for other FPGA devices
 - xc7z045/xc7z030 (smaller): maybe feasible, requires much optimization, tolerable penalty in time/accuracy
 - zu19eg (big upcoming RT): easy fit, utilization<30%)
 - ng-large (EUR): ~20% more challenging than xc7z030

	LUT*	DFF	DSP	RAMB36
Canny**	2948	3174	4	346,5
Matching	298	389	-	5,5
Renderer**	93383	148071	966	224
Xillybus+Misc	2895	3777	-	6
TOTAL	99524 (36%)	155411 (28%)	970 (48%)	582 (77%)

*Zynq xc7z100-2L (277K LUTs, 554K DFFs, 2020 DSPs, 755 RAMB36) **Image 1024x1024 16-bit (Canny: 2 maps) (Renderer: 4 stripes)

Page 28

RESULTS

RESOURCES

- tested on biggest Zynq7000 FPGA (xc7z100-2 of MMP)
 - 36% LUTs, 48% DSPs, 77% RAMBs, Fmax>200MHz
 most demanding is Renderer (94% logic of design)
 - power≈4.5W (peak 9W) (CPU@667MHz, PS@200MHz)
- rough estimations for other FPGA devices
 - xc7z045/xc7z030 (smaller): maybe feasible, requires much optimization, tolerable penalty in time/accuracy
 - zu19eg (big upcoming RT): easy fit, utilization<30%
 - ng-large (EUR): ~20% more challenging than xc7z030

SPEED

- Time per HW kernel = 5-11ms (plus 55ms for SW function)
- Acceleration (vs ARM) = 19x (system, up to 62x for kernels)
- FPS = 12 on avg. (10-16 depending on ENVISAT distance)

	LUT*	DFF	DSP	RAMB36
Canny**	2948	3174	4	346,5
Matching	298	389	-	5,5
Renderer**	93383	148071	966	224
Xillybus+Misc	2895	3777	-	6
TOTAL	99524 (36%)	155411 (28%)	970 (48%)	582 (77%)

*Zynq xc7z100-2L (277K LUTs, 554K DFFs, 2020 DSPs, 755 RAMB36) **Image 1024x1024 16-bit (Canny: 2 maps) (Renderer: 4 stripes)

IMPLEMENTATION RESULTS

RESOURCES

- tested on biggest Zynq7000 FPGA (xc7z100-2 of MMP)
 - 36% LUTs, 48% DSPs, 77% RAMBs, Fmax>200MHz
 most demanding is Renderer (94% logic of design)
 - power≈4.5W (peak 9W) (CPU@667MHz, PS@200MHz)
- rough estimations for other FPGA devices
 - xc7z045/xc7z030 (smaller): maybe feasible, requires much optimization, tolerable penalty in time/accuracy
 - zu19eg (big upcoming RT): easy fit, utilization<30%
 - ng-large (EUR): ~20% more challenging than xc7z030

SPEED

- Time per HW kernel = 5-11ms (plus 55ms for SW function)
- Acceleration (vs ARM) = 19x (system, up to 62x for kernels)
- FPS = 12 on avg. (10–16 depending on ENVISAT distance)

ACCURACY

- analyzed for 100's frames at 50m, 30m, and 20m
- in general, alignment error < 1% (as good as in SW)
- few bad cases (7%, lost track), corrected in new alg.

HIPNOS, TEC-ED & TEC-SW Final Presentation Days 2017/12/12

Page 30

	LUT*	DFF	DSP	RAMB36
Canny**	2948	3174	4	346,5
Matching	298	389	-	5,5
Renderer**	93383	148071	966	224
Xillybus+Misc	2895	3777	-	6
TOTAL	99524 (36%)	155411 (28%)	970 (48%)	582 (77%)

*Zynq xc7z100-2L (277K LUTs, 554K DFFs, 2020 DSPs, 755 RAMB36) **Image 1024x1024 16-bit (Canny: 2 maps) (Renderer: 4 stripes)

Doc. Code

N N E V EL O N CL $\mathbf{D}\mathbf{U}$

FINAL DEMONSTRATION **DEMO (RECORDED)**

- **video**, with off-line processing (huge debug info, ~1GB)
 - info recorded in files, analyzed/shown in MATLAB
 - not done real-time (much slower than 12 FPS claim)
- 3 datasets (@50m, @30m, @20m), 100 frames each
- shown: 4 windows + running statistics (per frame) ٠
 - 1) captured image (before contrast enhancement)
 - 2) rendered model (depth values from FPGA)
 - 3) matches between images (returned from FPGA)
 ~1300 vectors: start-end to detected edgels

 - some outliers, most agree with object motion
 - 4) error plot (drawn gradually)
 - □ statistics: time analysis (recorded timestamps)
 - use gettime, add FPGA and PoseEst. time
 - omit imaging, error calculation, debug info, and OS spikes (e.g., 3x 1-sec, due to sdcard)
 - compare to all-SW gettime results (stored)
 - "speedup" refers to entire HW/SW system
 - "fpga" speedup is for VHDL kernels, alone statistics: matches + error
 - "matches" refers to FPGA results (varies)
 - "pts" refers to limit (actually used for PE)

FINAL DEMONSTRATION **DEMO (LIVE)**

- **console**, with results on-the-fly (minimal information to user)
 - connect from PC to MMP via *ssh* (point-to-point Ethernet)
 run script "pedemo", get 6-10 FPS (due to imaging overhead)
- 3 datasets (@50m, @30m, @20m), ~1500 frames total
- shown: console with running results (per frame)
 - start/end of main functions
 - 6D pose estimates

 - error (calculated vs groundtruth) time (cumulative, not filtered/analyzed)
- shown optionally: summary of results (upon end)
 - call gnuplot to show "error vs time"
 - open files of recorded timestamps
- not shown: graphics at run-time (as in MRR)

 - cannot plot edges (now, hidden in FPGA)
 could plot stuff (e.g., depth map), but very slowly (~1 FPS)

 \succ tip: first run all-SW (w/ and w/o graphics), feel the acceleration

HIPNOS, TEC-ED & TEC-SW Final Presentation Days 2017/12/12 Page 33

View Search Terminal 0 751855 1 495478 1015: positional error d time: 0.17 seconds. -2.026649 -0.097275 -0.159226 20.942781 0.331319 -0.816875 -0.097275 -0.159226 20.94278 -0.764571 1.502200 3.700547 -0.034805 -0.085423 20.95858 angular error 0.637351 (deg), alignment error 11.623241 (cm) [total change 1.175 0.17 seconds, 172.6847 msec Gnuplot (window id : 0)

CONCLUSIONS

FROM TRADE-OFF STUDY

- latest space-grade CPUs 10x faster than predecessors, still slow for high-performance VBN (e.g., 0.1x)
- by offering best perf/Watt vs all platforms, FPGAs can bridge the gap with reasonable power budget (<10W)

FROM ALGORITHM DESIGN

- edges are good/sufficient as features for ENVISAT
- rendering allows any 3D model to be used (without preprocessing/assumptions)

FROM SYSTEM DEVELOPEMNT

- Xillinx Zynq on MMP achieves (specifically for pose estimation in ADR with passive sensors/cameras)
 - 10+ FPS for 1024x1024 images (or 5+ for 2048x2048)
 - power around 5W (peak 9W)
 - error around 1%, most often less than that

A D D S ON C HINDS 3 R

ROADMAP

TRADE-OFF STUDY WILL NEVER END

· Technology is alive, continuous improvement and new developments

INCREASE TRL

- Real-Time Operating System
- FDIR, EDAC, Scrubbing memory (Zynq ARM processors)
- Redundancy Mitigation: TMR, Dual-core Lock-Step (margins)
- ¿HW Shielding, SOI process, lead, current limiters, power cycle?
- Fault-tolerant additional SW design
- In-flight Reconfiguration and Supervisor
- Validation and Verification \rightarrow
 - ${}^{\scriptscriptstyle \bullet} \quad \mathsf{MIL} \rightarrow \mathsf{SIL} \rightarrow \mathsf{PIL} \rightarrow \mathsf{HIL}$
 - Tests in Representative Environments
 - Fault-Injection Tests
 - Radiation Characterization
 - Radiation Tests Campaigns
- Road to Flight Model, HW including camera detector Embedded/Clean Solution

Intel to Introduce new CPU-FPGA Hybrid Chip Supported by Acceleration Stack

Xilinx Zynq SoC road to Zynq Ultrascale MPSoC rad-to

BRAVE NanoXplore Rad-hard SoC: FPGA + ARM processor

THANK YOU questions?

Auren

www.facebook.com/infoGMV @infoGMV **DAVID GONZALEZ-ARJONA:**

Sorry, could not attend presentation due to storm

ORK

A 2 6

CANCELLED

CANCELLED

HIPNOS, TEC-ED & TEC-SW Final Presentation Days 2017/12/12 Page 38

UNCLASSIFIED INFORMATION

Doc. Code