CENTRE FOR ENERGY RESEARCH HUNGARIAN ACADEMY OF SCIENCES

RadMag combined cosmic ray and magnetic field measuring space weather instrument development for CubeSat/SmallSat applications

<u>Zábori B.¹</u>, Hirn A.¹, Eastwood J.², Brown P.², Tokarz M.³, Giovanni S.⁴, Nieminen P.⁴, Szewczyk T.⁴, Marosy G.⁵

¹ Centre for Energy Research (HU)

- ² Imperial College London (UK)
- ³ Astronika Sp. z.o.o. (PL)

mtaF

- ⁴ European Space Agency (ESA)
- ⁵ C3S Electronics Development LLC (HU)

Space Environment Monitoring Workshop (SPACEMON), 14 December 2017

Contents

- Instrument concept & development team
- Instrument specifications
- Instrument design status overview
- 1st IOD mission overview (RADCUBE 3U CubeSat)
- Future concept: fleet of monitoring CubeSats/SmallSats
- Conclusions

Instrument Concept & Development Team

Zabori et al., SPACEMON 2017, 14/12/2017

RadMag instrument concept

- RadMag = Cosmic Radiation and Magnetic Field Instrument Package
- Space weather monitoring by combination of cosmic ray and magnetic field measurements into one instrument
- Specification is reflecting to ESA SSA SWE product requirements
- Cosmic ray measurements by silicon based telescopes: proton, electron, HZE spectra separately
- In-board and outboard 3-axis magnetoresistive sensor
- Built-in boom system to support the magnetic field measurements
- Built-in dose rate monitoring and Radiation Hardness Assurance (RHA) capabilities
- Small size to fit for CubeSat/SmallSat missions (fitting ~1.2U CubeSat standard)
- Low-cost alternative in future space weather studies and forecast services and in general radiation damage monitoring for commercial use
- Instrument development within ESA GSTP programme

RadMag Development Team

	Abbrv.	Team Member	Responsibility
mtaE	MTA EK	Centre for Energy Research HUNGARY	Instrument development coordinator Radiation sensor system development
Imperial College London	ICL	Imperial College London UNITED KINGDOM	Magnetometer development
Astronika space solutions here & now	ASTRO	Astronika POLAND	Boom system development
Cesa	ESA	European Space Agency ESA ESTEC	RHA development Instrument development reviewer

Instrument specifications

TTTTTTTT

Zabori et al., SPACEMON 2017, 14/12/2017

6

ACCOLUMN THE REAL

Radiation Sensor System specification

Parameter	Values, ranges
Particle types	electrons, protons, heavy ions
Minimum electron energy	100 keV
Electron energy range	0.3 MeV – 8.0 MeV Channel number: 2-5 Contamination: <10 %
Minimum proton energy	1 MeV
Proton energy range	4 MeV – 1 GeV Channel number: 11-18 Contamination: <10 %
Heavy ion energy range (He&C&N&O&Fe)	100 MeV/n – 1 GeV/n Channel number: 4 Contamination: <10 %
Field of view for electron and proton measurement (half-angle)	31°
Field of view for heavy ion measurement (half-angle)	46°

Magnetometer specification

EARCH IENCES

	Mode	
Parameters	Nominal	High resolution
Range	± 60,000 nT	
Sampling rate	1.0 Hz	10 Hz
Orthogonal directions	3	
Orthogonality error	≤0.1°	
Noise limit	≤500pTrms/VHz (at 1Hz at 25°C)	
Temperature coefficient	≤±1 nT/°C	
No. of sensors	2 (1: inboard, 1: outboard)	

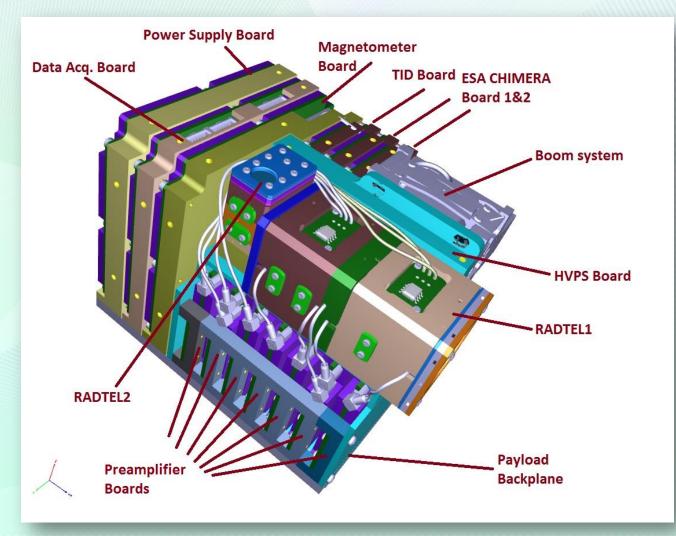
Boom System Specification

Parameters	Values
Maximum deployed length	80 cm
Retraction capability	No
Carried mass (with harness)	30 g
Carried volume	2.0x2.0x1.2 cm ³
Deployed position accuracy	≤ ±3 cm
Deployed angular accuracy	≤ ±1.5deg/m
Deployment encoder	Yes
Available volume for the boom system (with harnessing)	4x4x10 cm ³
Maximum deployment velocity	20 mm/s
Peak power consumption	4 W

OF SCIENCES

Zabori et al., SPACEMON 2017, 14/12/2017

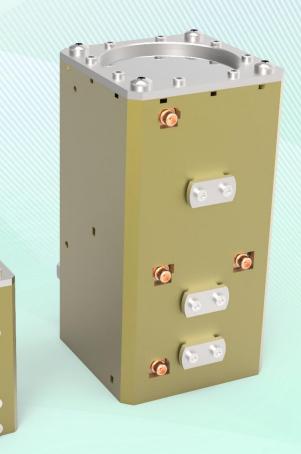
Instrument Design Status Overview


Zabori et al., SPACEMON 2017, 14/12/2017

10

unning

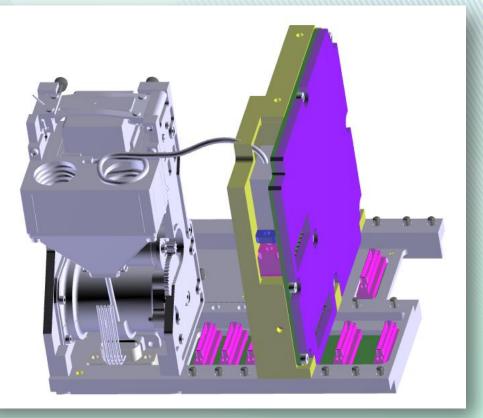
Instrument overall design



Zabori et al., SPACEMON 2017, 14/12/2017

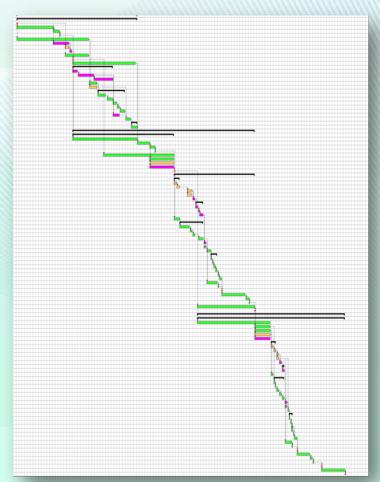
Radiation telescopes

- Two different telescopes
 - different sensitive area
- Perpendicular arrangement
 - directionality assessment
- Utilising Micron silicon detectors
- 10-µm thick titanium entrance windows



Magnetometer and boom system

- Magnetoresistive sensors
 - 3-axis sensors
 - inboard and outboard
- Tape spring based boom
 - up to 80cm long
 - opening in definitive steps



Development status

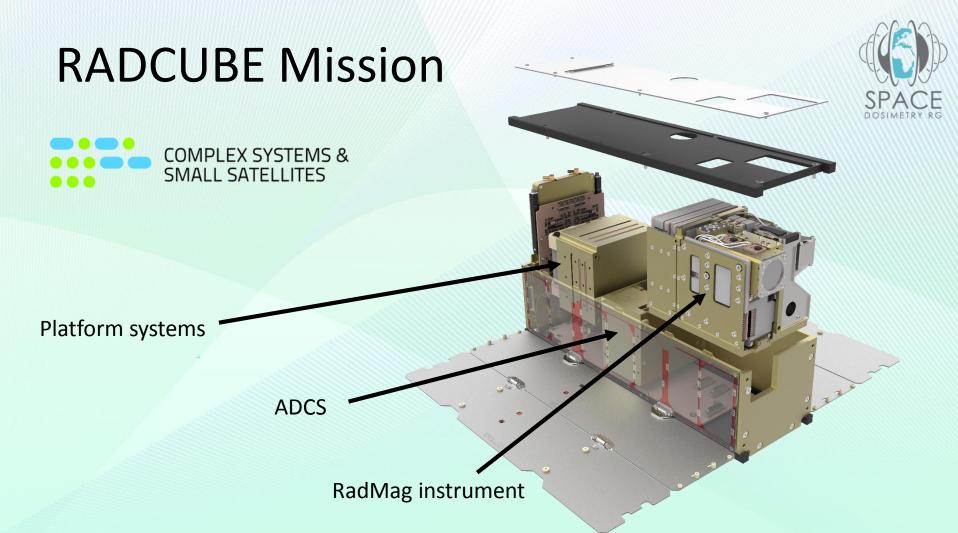
- Kick-Off Meeting June 2016
- IRR December 2016
- <u>PDR December 2017</u>
- CDR August 2018
- QR February 2019
- FAR August 2019
- 1st flight Q3 2019

1st IOD Mission: RADCUBE Future Concept: CROSS Network

FOR ENERGY RESEARCH

Zabori et al., SPACEMON 2017, 14/12/2017

15


THE REAL PROPERTY OF

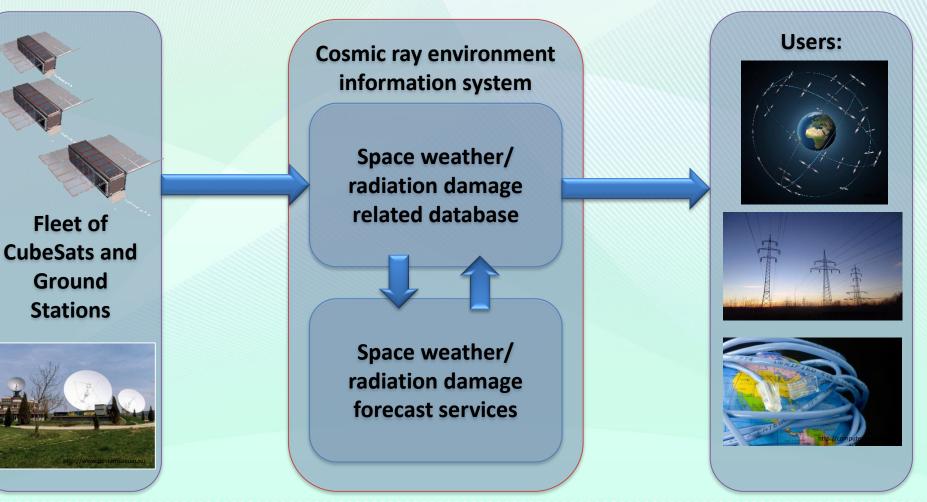
RADCUBE Mission

- In-orbit demonstration 3U CubeSat mission within ESA GSTP 6.3 programme
- Lead by a Hungarian CubeSat Company (C3S LLC)
- Project is just now passed the PDR
- Expected launch: Q3 of 2019

Future vision: CROSS Network = Cosmic Ray Observatory

Satellite System

Future vision


CENTRE FOR ENERGY RESEARCH

HUNGARIAN ACADEMY OF SCIENCES

mta

• CROSS Network = Cosmic Ray Observatory Satellite System

Conclusions

111 SIL 10 100 1

 0
 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0
 0
 0

 0
 0
 0
 0
 0
 0
 0
 0

Zabori et al., SPACEMON 2017, 14/12/2017

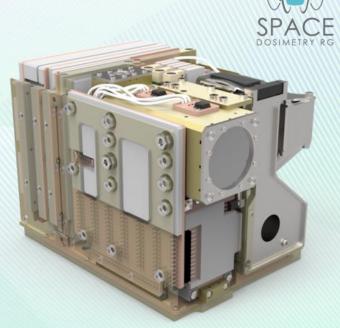
19

and the second second

Conclusions

- New space weather monitoring instrument development: RadMag
- Unique combination of cosmic ray and magnetic field measurements into one instrument
 - Very small size to fit for CubeSat/SmallSat missions (fitting ~1.2U CubeSat standard)
 - Built-in boom system to support the magnetic field measurements
 - Relatively low-cost alternative for future space weather studies and in general radiation damage monitoring for commercial use
- Instrument development just now passed PDR and moving into phase C
- 1st IOD Mission: RADCUBE 3U CubeSat
 - Expected launch is Q3 2019
- Future vision (CROSS Network): CubeSat/SmallSat constellation for space weather and radiation damage monitoring services

European Space Agency


Imperial College London

Astronika

COMPLEX SYSTEMS &

SMALL SATELLITES

Thank you for your attention!

Balázs Zábori (RadMag Project Manager)

zabori.balazs@energia.mta.hu

Zabori et al., SPACEMON 2017, 14/12/2017 21