
Maxime Perrotin, Andreas Jung, Jean-Loup Terraillon
with contributions of GMV in COrDeT-2 studies
…and Suzanne Guerreiro as Estec trainee

ESA software factory prototype
based on TASTE

The software reference architecture

Presentation of the Architectural steps

– One principle of OSRA is “separation of concerns”: application to
subsystems engineers (AOCS), architecture to software architect,
implementation to real-time software engineers (supported by tools)

– Therefore a toolset (“software factory”) takes an application level
model and generates the code

Application
level model

Detailed
design
model

Real-time
model Code

Model
trans
forma
tion

Code
gene
ration

Model
trans
forma
tion

CoRDeT - SCM Taste toolset

The knowledge of the
architectural design (PUS and

SOIS design patterns, libraries)
is in the model transformation

tool

The software
factory implements
and generates the

software bus

Application level model

Two application components, AOCS and
FDIR, are placed by the Application
engineer.
They are instance of a component type.

AOCS receives a command through an interface.
In this version, a double click on the interface
shows a table where the command is shown: it is
change_mode through PUS service 8. The PUS
commanding design pattern will be activated.

AOCS has 2 interface that needs to be
reported through PUS, and 2 interface
that need to be monitored by PUS. The
green boxes are abstraction of the PUS

design patterns.

AOCS talks to a star
tracker though a proxy
that is an abstraction of

the SOIS services

Operations:
 setMode(parameter);
Attributes:
 currentMode
 currentPointAccuracy
 …

Now we model-transform from application
level model to detailed design model

(design patterns are inserted)

Application
level model

Detailed
design
model

Model
trans
forma
tion

The execution platform

Component Layer
Component Model

Data Model
Components (Type, Implementation and Instance)

Interaction Layer
Containers and Connectors

Execution Platform Service Layer

Reporting Monitoring Automation Archiving Time Access
Command
and Data

Acquisition

Message
Transfer

Tasking

Monitoring and Control (M&C) Services Avionics (SOIS) Services

Domain-Neutral Services

Commanding
System

Management:
Context

Management &
Error Reporting

Language
Support
Libraries

(Maths, etc.)

Data Handling Core (DHC) Synchronization
Service

Packet
Service

Memory
Access
Service

Execution Platform Layer

SOIS PUS

Detailed design Model

The model transformation
tool has expanded the green
and red boxes into design
patterns

This diagram has more
PUS services than the
application level model
one. This is just to give
the complete view of the
current implementation

Each box will be detailed
in the next slides

The SOIS implementation is
incomplete… We miss the
subnetwork layers (today it
goes on Ethernet), and the
MTS is hidden.

This is the
“execution platform”

PUS

SOIS

ASW

AOCS
FDIR

Mission
mgmt

Serial
link

MIL
bus

functional

protocol

Application
support

layer

Sub-network
layer

the PUS boxes…

PUS

SOIS

ASW

AOCS
FDIR

Mission
mgmt

Serial
link

MIL
bus

functional

protocol

The Commanding box

PUS

SOIS

ASW

AOCS
FDIR

Mission
mgmt

Serial
link

MIL
bus

functional

protocol

The Housekeeping box

Connection
to AOCS

Connection
to FDIR

PUS

SOIS

ASW

AOCS
FDIR

Mission
mgmt

Serial
link

MIL
bus

functional

protocol

The Monitoring box

PUS

SOIS

ASW

AOCS
FDIR

Mission
mgmt

Serial
link

MIL
bus

functional

protocol

The Data Handling boxes
(packets and protocol related issues)

the SOIS boxes…

PUS

SOIS

ASW

AOCS
FDIR

Mission
mgmt

Serial
link

MIL
bus

functional

protocol

The “SOIS -
Command&DataAcquisitionService” box

Connection to AOCS

Connection to
sub network

layer

PUS

SOIS

ASW

AOCS
FDIR

Mission
mgmt

Serial
link

MIL
bus

functional

protocol

The SOIS Time management box

Taste as a back end

Then, from the detailed design provided by the previous step

And from the behaviour of the functions provided by specific tools
(Simulink. State machines)

Being given the deployment view (physical topology, hardware)

Taste generates the code

SAVOIR | Jean-Loup TERRAILLON | Malta | DASIA2011 | 18/05/2011 | Pag. 16

Detailed
design
model

Real-time
model Code

Model
trans
forma
tion

Code
gene
ration

Taste toolset

Why Taste?

ESA builds TASTE as an exploration platform implementing state-of-the-
art software technologies and targeting:

– Distributed on-board software

– Communication with many equipment, embedded devices

– Heterogeneity everywhere
(state machines/control laws,
integrator/subcontractor,
hw/sw co-design,
languages & technologies)

– Based on free, open-source software

Use cases for Taste

TASTE eases the development of consistent software made of:

– Embedded and ground software, GUIs, databases, algorithms

– Software where communication is a central aspect

– Safety-critical components

It serves as a laboratory platform to experiment new technology

It helps ESA to support project engineering phases and reviews

– Understand the scope of software, the actors, the design

– Detect issues, ambiguities

– Run simulations, analyse scenarii

TASTE Software factory - philosophy

– Use existing technologies – glue them together when semantics are
compatible

– Don’t reinvent the wheel, software modelling is not new: learn, use
and build on top of languages that are mature and widely used in
other industries (AADL, ASN.1, SDL, Simulink)

– Let application designers choose the technology that is the most
appropriate for each purpose – don’t try to code drivers in UML!

– Automate everything that can be

– Be open and build tools that are ready for technology exploration
(multicore, advanced analysis tools, model checking)

– Develop tools that make the life of developers easier – keep the right
balance between abstraction and concrete implementation. Both
count!

– Target software and systems, not models. Models are just a mean!

How do the tools look like (1)?

• Graphical approach to unambiguously capture the system

architecture and its real-time properties

How do the tools look like (2)?

– Tools to describe state machines – they are complex, and capture
the core of the system behaviour

ASN.1 to describe interfaces

– A simple notation to describe software and hardware interfaces

– Our tools generate code for embedded systems (no malloc, no
system call, support for C and [Spark] Ada)

+

Mix languages to get the best of all
worlds – no “unified language” to rule
them all!

– The robotic case study mixes C (drivers), SDL (RTDS – system overal
orchestration and logic) and Simulink (control laws)

If we replace the Simulink block
with a VHDL component, the
rest of the system remains
unchanged from the user point
of view.

Taste capabilities and process

– Capture the system architecture to analyse the system feasibility

– Capture data types (ranges, units) to ensure consistency
everywhere in the system

– Capture the software expected behaviour (state machines,
algorithms) and let tools explore this behaviour to verify or discover
some properties of the system

– Automate the production of code and documentation. Support
continuous integration

1) Describe the system logical architecture and interfaces

2) Generate code skeletons and write the applicative code or models

3) Capture the system hardware and deployment

4) Verify models

5) Build the system and download it on target

6) Monitor and interact with the system at run-time

Software factories must have strong
basis

– TASTE relies on formal languages :

– ASN.1 and AADL to capture the software architecture and data

– SDL, Simulink, SCADE, C, Ada, VHDL, … to capture the software
behaviour

– MSC and Python to test

– Combine graphical AND textual notations

– If anything goes wrong, human can fix textual syntax

– Diagrams for easier understanding

– But some information is textual by nature

– Avoid languages with weak semantics or syntax

And make developers and testers’ life
easier

– Generate additional code to help users test their system (real-time
monitoring and interaction with the binary)

Presentation of the Architectural steps

– One principle of OSRA is “separation of concerns”: application to
subsystems engineers (AOCS), architecture to software architect,
implementation to real-time software engineers (supported by tools)

– Therefore a toolset (“software factory”) takes an application level
model and generates the code

Application
level model

Detailed
design
model

Real-time
model Code

Model
trans
forma
tion

Code
gene
ration

Model
trans
forma
tion

Obeo Designer Taste toolset Acceleo

The knowledge of the
architectural design (PUS and

SOIS design patterns, libraries)
is in the model transformation

tool

The software
factory implements
and generates the

software bus

http://taste.tuxfamily.org

Contact

http://taste.tuxfamily.org

Feedback: savoir@esa.int

mailto:Savoir@esa.int

	ESA software factory prototype based on TASTE
	The software reference architecture
	Presentation of the Architectural steps
	Application level model
	Slide Number 5
	The execution platform
	Detailed design Model
	Slide Number 8
	The Commanding box
	The Housekeeping box
	The Monitoring box
	The Data Handling boxes�(packets and protocol related issues)
	Slide Number 13
	The “SOIS -�Command&DataAcquisitionService” box
	The SOIS Time management box
	Taste as a back end
	Why Taste?
	Use cases for Taste
	TASTE Software factory - philosophy
	How do the tools look like (1)?
	How do the tools look like (2)?
	ASN.1 to describe interfaces
	Mix languages to get the best of all worlds – no “unified language” to rule them all!
	Taste capabilities and process
	Software factories must have strong basis
	And make developers and testers’ life easier
	Presentation of the Architectural steps
	Contact

