
ESA UNCLASSIFIED – For Official Use

The Software Factory concept

Andreas Jung
Jean-Loup Terraillon

ESA TEC-SWE
© hiberus.com

ESA UNCLASSIFIED – For Official Use

Importance of software in the system

– Software implements (more and more of) the system behaviour

– System complexity increases software size increases

– Software schedule is squeezed within the system schedule

– Software is the last flexibility of the system at the end of the life
cycle

– Software is a candidate for subcontracting policies

– Software touches many parts of the system. It has interface
everywhere (ground – hardware – avionics – payloads – sensors –
actuators – egse – security)

– Software uses a lot of data from various system functional chains
(centre of gravity, temperature, health status, voltage)

– Software has several users (system – AIT – operation)

ESA UNCLASSIFIED – For Official Use

User needs from Savoir-Faire

FASTER (increase productivity)
– Shorter software development time
– Reduce Verification and Validation effort
– Reduce recurring developments (don’t redevelop recurring software: about 50%

of platform software)
– Increase cost-efficiency (more requirements same cost)
– Quality of the product (at least same quality)

LATER (increase reactivity)

– Mitigate the impact of late requirement definition or change
– Optimize flight maintenance
– Simplification and harmonization of FDIR

SOFTER (increase flexibility)

– Support for various system integration strategies (customer-supplier)
– Industrial policy support
– Role of software suppliers (multi-vendor policy)
– Dissemination activities (concept usable by system engineers)
– Future needs

ESA UNCLASSIFIED – For Official Use

Needs Solutions

– Productivity

– Complexity

– Reactivity

– Flexibility

– Consistency

– of interface,

– of data flows,

– of use

 Automation (automatic
generation, continuous
build, automatic regression)

 Rely on process
Assess feasibility early,
verify behaviour

 Architecture (reference
architecture, product lines)

 Configuration (data driven,
parameters, missionisation)

 system database

 Automation, production line,
process, configuration, build, is
the vocabulary of a FACTORY

ESA UNCLASSIFIED – For Official Use

Software factory context

PRODUCT
LINE

FUNCTIONAL
VERIFICATION DATABASE

FLIGHT
SOFTWARE

MISSION SPECIFIC
configuration,
missionisation

ESA UNCLASSIFIED – For Official Use

Software factory content

CONTINUOUS
BUILD:
 Generation
 Testing
 validation

CONFIGURATION
MANAGEMENT

MODELING:
 Editors
 “Model compilers”

Database

CONFIGU
RATORS”

System/Software tools:
 Trade-offs (hw/sw co-design)
 Verification (dependability)

REQUIREMENT
ENGINEERING:
 Doors <high TRL>

 Feature editors

SYSTEM

SOFTWARE

lower TRL higher TRL

Role of ESA?

ESA UNCLASSIFIED – For Official Use

The presentations

PRODUCT
LINE

FUNCTIONAL
VERIFICATION DATABASE

FLIGHT
SOFTWARE

MISSION SPECIFIC
configuration,
missionisation

LERO

AST – TAS - OHB

OBEO
Unisys

Vitrociset

ESA UNCLASSIFIED – For Official Use

Questions for the round table

– Why should we automate software engineering in software factories?

– What are the preconditions, the obstacles and the limits of
automation?

– Is there a process model or life cycle, which is more favourable?

– Is there a business context more favourable? Relationship
automation/product line.

– What is the tool support organisation of software factories?

– Should the customer do something to make software factories more
efficient?

	The Software Factory concept
	Importance of software in the system
	User needs from Savoir-Faire
	Needs			 Solutions
	Software factory context
	Software factory content
	The presentations
	Questions for the round table

