

MultiPARTES: Virtualization of Heterogeneous Multicore

Salvador Trujillo

Alfons Crespo

Juan Antonio de la Puente

ESA/ESTEC ADCSS 2013 Oct 22-24th, 2013

MultiPARTES FP7 Project

Project details – IKERLAN-IK4 Project coordinator

- 2.850.000 Euro EC Contribution
- Sep 2011 / Aug 2014 Project start / end date
- 36 months Duration
- Web: <u>http://www.multipartes.eu/</u>

MultiPARTES Project

Objective: Support mixed criticality systems based on

heterogeneous multicore open source virtualization

SEVENTH FRAMEWORK PROGRAMME

2

KFRLAN

MultiPARTES Goals

1) MultiPARTES aims at developing tools and solutions based on mixed criticality and assurance-based virtualization systems for multicore.

The starting point for virtualisation support is **XtratuM**, an open source cost-effective hypervisor.

2) MultiPARTES will offer a **rapid and cost-effective development of trust real-time embedded systems** sharing critical and no critical applications the system resources.

MultiPARTES Topics

 Aim: Support mixed criticality systems based on heterogeneous multicore open source virtualization

Multicore Virtualization

- Uniform view for partitions
- AMP / SMP XtratuM hypervisor
- Heterogeneity
 - Hardware platform with different processors
 - Software architecture
 - Communication & synchronization between cores
- Mixed criticality => Methodology and Tools
 - System definition models: Platform, Computational, ...
 - Criteria to allocate functions to partitions
 - Scheduling tool

Based on XtratuM Multicore (proof of concept in SIDMS ESA project)

- Offers as many virtual CPUs as real CPUs are in the board
- Initialises the real CPUs and offers the virtualCPU0 to the partitions
- Partitions are in charge of initializing other virtualCPUs
- Partitions can be mono-core or multicore

Temporal and Spatial Partitioning systems

- Temporal isolation
 - Temporal allocation of partitions
 - Execution Interference of other cores
- Spatial isolation
 - No additional problems
- Shared resources:
 - Cache L2 and L3, bus arbitration, memory
 - Introduce unpredictable execution time in partitions

Worst Case Execution Time Impact

$$WCET = WCET_{task} + Interference$$

- The interference can be modeled
 - **Evaluating the Inteference** ٠
 - Limiting it by construction of the scheduling plan •

Worst Case Execution Time Impact

$$WCET = WCET_{task} + Interference$$

- The interference can be modeled ____
 - **Evaluating the Inteference** ٠
 - Limiting it by construction of the scheduling plan •

Heterogeneity

Integration of different hardware platforms permits:

- Hardware diversity
- Specialized hardware
- Isolation of critical => deterministic hardware
- MultiPARTES:
 - 1 Atom Dual Core + FPGA with 2 LEON3 with shared memory
- Examples
 - Space: LEON3 Multicore + ARM Cortex processor
 - Space: LEON3 Multicore + DSP

Heterogeneity: Software Arch.

ASM: Asymmetric multiprocessing

- Each core is handled by one OS instance
- SMP: symmetric multiprocessing
 - All cores are handled by the OS

Heterogeneity

- Needs
 - Clock synchronization: MAF synchronization
 - Inter-partition/Inter-platform communication
 - Double port memories
 - Bus based communication

Heterogeneity

- Needs
 - Clock synchronization: MAF synchronization
 - Inter-partition/Inter-platform communication
 - Double port memories
 - Bus based communication

Heterogeneity: Sw

- Execution Environments
 - MTPAL: MultiPARTES Abstraction Layer. Single thread applications. Basic services (TSAL IMA-SP)
 - PartiKle: Real-time kernel. POSIX PSE51.
 - ORK+: Ada applications. Ravenscar Profile.
 - Linux

	LEON3	x86
MTPAL	х	х
PartiKLe	х	х
ORK+	х	
Linux		х

	License
MTPAL	GPL
PartiKLe	GPL
ORK+	GPL
Linux	GPL

Model-driven Partitioning

Real world

Abstraction

Modeling tool

bool Custom_nodeAppImpl::init()

icAcquireInputs = new Custom_nodeAcquireIn
nvVote_inputs = new Custom_nodeVote_inputs
fbodometry = new Custom_nodeNote_contr
nvVote_odometry = new Custom_nodeNote_contr
nvVote_odometry = new Custom_nodeNote_odom
fbbrake_curve_generator = new Custom_nodeI
fbDecide = new Custom_nodeDecide();
fbStand_by = new Custom_nodeStand_by();
nvVote outputs = new Custom_nodeStand_by();

nvVote_outputs = new Custom_nodeVote_outpu ocWrite_outputs = new Custom_nodeWrite_outp

Generated artifacts

14

Input / Activities / Output

Input information:

- Platform and Application models
- Partitioning restriction model

Activities:

- Propose a system partitioning
- Meet the real-time, safety and security constraints

Outcomes:

 Code skeletons, XtratuM configuration files, make file

Architecture of the toolset

Ę

Industry demonstrators

Industry demonstrators

Video surveillance

- X86 platform
- MTPAL, PartiKle, Linux
- Devices: Video cameras, data storage

WindPower

- x86 and LEON3 platforms
- MTPAL, Partikle and Linux
- Devices: Scada system, EtherCAT,
- IEC 61508 Pre-certification

Space

- LEON3 platform
- MTPAL and ORK+
- UPMSat Platform ADCS, OBDH, Communications, Payload

Project results

Virtualization Layer

– XtratuM Multicore for x86 and LEON3

Execution Environments

- Several guestOSs have been adapted

Methodology

- Model-driven. Application and design levels.
- Partitioning, Scheduling, Code Generation Tools

Hardware issues

- Experimentation with TTNoC
- Experimentation in mechanisms to reduce the memory interference

Current Status

- Virtualization Layer
 - XtratuM Multicore for x86 and LEON3
- Execution Environments
 - Several guestOSs have been adapted
- Methodology
 - Model-driven. Application and design levels.
 - Partitioning, Scheduling, Code Generation Tools
- Hardware issues
 - Experimentation with TTNoC
 - Experimentation in mechanisms to reduce the memory interference

Completed

On going

Certification aspects

- Wind power safety concept based on MultiPARTES multicore partitioning
 - Following IEC-61508
 - Presented to TÜV Rheinland
 - Positive feedback collected
 - TÜV report (under progress)
- Follow-up work in the context of DREAMS project

Benefits for Industry (Space)

- XtratuM has been evolved based on Space requirements
 - Maturity increased
 - Reusable Test suites
- Additional execution Environments
 - MTPAL: multicore evolution of TSAL (ESA IMA-SP project)
 - ORK+: developed under ESA contracts.
- Methodology
 - Partitioning criteria
 - Partitioning, Scheduling, Code generation tools
 - Hypervisor partitioning configuration generation
- Hardware
 - LEON3 multicore experimentation

Conclusions

- Snapshot halfway of the project
- Challenging field with industrial interests (there is some competition going on ...)
- Collaborative effort together with other projects
- Transferring advance technology to the industry
- A new line of embedded systems is being conceived
- Beyond our project
 - From multi-core to many-core ... does it make sense in industry?
 Where?
 - Certification of the approach. Work together with certification body?
 - Availability of commercial HW, HW mechanisms
 - Ease integration of legacy code

Thanks for your attention

Support mixed criticality systems based on heterogeneous multicore open source virtualization

http://www.multipartes.eu/

