

Mixed-Signal Test Vehicle in Microchip Atmel ATMX150RHA

S. Ahmad, JB Cizel, J.Fleury, Weeroc M. Dollon, S. Passant, S. Panier, O. Perier, B. Sanctorum, Airbus D&S

High-end Microelectronics Design

Presentation outlook

- Weeroc presentation
- Test vehicle presentation
- DAC requirement specification
- DAC design
- DAC performances
- Conclusion & next step

WEEROC PRESENTATION

Say Hi !

Weeroc story

- Founded by engineers (OMEGA) from IN2P3/CNRS nuclear and particle physics institute, nat. french agency for research
- Officially established in 2012
- Weeroc & OMEGA are located at Ecole Polytechnique campus

Core activities at IN2P3/CNRS: Design of front-end integrated circuits to read-out particle physics detectors Our expertise Radiation tolerant design Low noise, low power analog microelectronics circuits

Technology and knowledge transfer

weeroc

Expertise of Weeroc

Design and marketing Analog & mixed-signal microelectronics ICs for photodetectors read-out

and radhard application

Particle detection

Low-noise, low power, analog and mixed-signal design

Radhard design

Weeroc markets

Aerospace industry

Nuclear industry

Homeland security

Scientific instrumentation

Analytical instrumentation

TEST VEHICLE PRESENTATION

The test vehicle

- 216b DAC, differential
- Set of RF switches
- LVDS
- HV LDMOS HVMOS
- Programmable register
- Programmable probe

Focus on 16b-DAC in that talk

DAC 16 bit : requirement specifications

- 16 bits
- 4 MSPS min 12MSPS typical speed
- Differential current output
- 1mA min /10mA max current output tunable

Parameter	Min.	Тур.	Max.	Units
Maximum full-scale output current	4	20		mA
Minimum output current	-	-	0	mA
Settling time to $\pm 1/2$ LSB	-	-	50	ns
Analogue output loads	-	50	-	Ω
Output loads capacitances	-	-	10	рF
Output glitch amplitude	-	-	1/2	LSB
Output glitch surface	-	-	35	рV
Maximum admissible conversion rate	4	12	-	MSps
Integral Non-Linearity (INL)	-4	-	+4	LSB
Differential Non-Linearity (DNL)	-5	-	+5	LSB
Spurious Free Dynamic Range (SFDR) @1MHz	-	80	-	dBc

State of the art

Parameter	Min	Тур	Max	Units
RESOLUTION	16			Bits
DC ACCURACY ¹				
Linearity Error				
$T_A = +25^{\circ}C$	-8	±4	+8	LSB
T_{MIN} to T_{MAX}	-8		+8	LSB
Differential Nonlinearity				
$T_A = +25^{\circ}C$	-6	±2	+6	LSB
T_{MIN} to T_{MAX}	-8		+8	LSB
Monotonicity (13-Bit) GUARANTEED O	VER RATED	SPECIFICATIO	N TEMPERATU	RE RANGE
ANALOG OUTPUT				
Offset Error	-0.2		+0.2	% of FSR
Gain Error	-1.0		+1.0	% of FSR
Full-Scale Output Current ²		20		mA
Output Compliance Range	-1.2		+5.0	V
Output Resistance	0.8	1.0	1.2	kΩ
Output Capacitance		3		pF
REFERENCE OUTPUT				
Reference Voltage	2.475	2.5	2.525	V
Reference Output Current ³		+5.0	+15	mA
REFERENCE INPUT				
Reference Input Current	1	5	7	mA
Reference Bandwidth ⁴				
Small Signal, IREF = $5 \text{ mA} \pm 0.1 \text{ mA}$		28		MHz
Large Signal, $IREF = 4 \text{ mA} \pm 2 \text{ mA}$		9		MHz

DAC 16 bit architecture

- Bibliography \rightarrow see proceedings
- Current steering DAC
- 16 bit : 12 binary (LSBs) + 4 thermometer (MSBs)

Layout

- Area : about 0.85mm2
- Include bandgap reference, 4 LDOs for intermediate voltage

Current reference and current source array

- Current reference can be trimmed by programmation
- Current source array follow a Q2 random walk (see bibliography)

Accuracy Q2 Random Walk CMOS DAC » IEEE Journal of Solid State Circuits, vol. 34, no. 12, December 1999, pages 1708-1718.

Bit #	Min INL (LSB)	Max INL (LSB)
B00_INL	0,055	0,058
B01_INL	0,111	0,115
B02_INL	0,201	0,213
B03_INL	0,316	0,343
B04_INL	0,308	0,383
B05_INL	-0,083	0,099
B06_INL	-0,147	0,156
B07_INL	-0,204	0,164
B08_INL	-0,320	0,265
B09_INL	-0,341	0,379
B10_INL	-0,528	0,436
B11_INL	-0,672	0,681
B12_INL	-1,042	0,851
B13_INL	-1,549	1,621
B14_INL	-1,756	1,701
B15_INL	-1,934	1,479

Switch array architecture

All cells designed placed and routed on full custom

Switches timing

- Load balance for every switch unit
- Rise/fall time trade-off
 - Reducing charge injection feedthrough to output
 - Avoid simultaneous switch OFF state
- Rise/fell ~ 650ps +/- 50ps

Current output

• Load balancing between switch array

Characterization board

• A characterization board and a firmware/software have been designed to measure the 16b DAC

STATIC MEASUREMENT

Offset and Gain Error

• The requirement on the gain error is ± 1 % on the full scale range. The error on this measurement is -0.0455 %. The offset error is -0.09 % FSR with a requirement of ± 0.2 % FSR.

INL and DNL

• Thermometer to binary mismatch

AC MEASUREMENT

Frequency domain analysis

- Numerically controlled oscillator build sine @1k, 10k, ..., 1M
- DAC sampling rate is swept from 1M, 4M, 10M
- DAC output is analyzed with 12b HiRes scope

SFDR

- Almost in spec for low frequencies
- Digital picking noise issue to be corrected ightarrow padring

Conclusion & next step

- A 16bit DAC 10MSPS has been designed in ATMX150RHA
- Technology shows very good analogue performances
- 2 actions to get in specification
 - Fine tuning Thermometer to binary
 - Floorplanning modification & pinout optimization
- Test vehicle to be tested in irradiation (@TRAD)
 CNES funding
- New iteration : as soon as \$
- Thanks to Airbus and CNES for their trust and support

Thank you

Architecture

27

DAC segmentation : 12-bit binary & 4-bit unary

