

Validation of a High Resolution ADC for Space Applications

M. Karaolis¹, K. Makris¹, C. Poivey³, O. Markakis¹, O. Dokianaki², P. Vagiannis¹, G. Vlachakis², D. Fragopoulos¹, C. Papadas¹, B. Glass³

⁽¹⁾ Integrated Systems Development (ISD S.A.), Athens, GREECE

⁽²⁾ Integrated Systems Development (ISD S.A.), Crete, GREECE

⁽³⁾ European Space Research and Technology Center (ESA/ESTEC) – Microelectronics Section (TEC-EDM), Noordwijk, THE NETHERLANDS

AMICSA 2018, IMEC, June 18

Outline

- Target specifications overview
- Design overview
- Electrical validation results
- TID test results
- SEE test results
- Performance summary
- Conclusions

Target specs

Innovations:

- Rad-hard
- High resolution
- Very low sampling rate

Resolution	24 bit
Analog input bandwidth	DC-10kHz
Effective resolution	16+bits
Dynamic Range	> 100dB
SNR	> 100dB
Sampling rate	≥ 5 kHz
Monotonicity	Full code range
Power dissipation	< 70 mW
LET for SEL immunity	≥ 70 MeV/mg/cm ⁻²
SEU immunity	Protection of critical memory cells
SET immunity	Protection of the digital part
TID tolerance	≥100 krad
Temperature range	-55 °C < T < 125 °C

Architecture and features

- **Single-bit** (inherently linear) ΣΔ modulator
- □ Single clock domain
- □ Very low sampling frequency operation
- Correlated double sampling input stage
- Differential or single-ended voltage drive
- ΣΔ modulator can be combined with external DSP core
- □ Simple serial output interface
- Selectable over-sampling ratios (OSR) allow sampling rates up to 265kSPS
- Analog bandwidth from DC to 45kHz
- \Box 1.8V/3.3Vpower supplies (3.3V I/O)
- □ Embedded or external voltage reference
- Radiation hardened against SEE and TID
- Technology: Atmel ATMX150RHA 0.15µm CMOS on SOI
 - 5 metals, 1 poly
 - Fully SPICE modeled and characterized devices
 - Rad-hard proven logic
 - DTI option, annular devices, HV...

ΣΔ modulator

Model introduced by [Norsworthy S.R., R. Schreier, G.C. Temes, 1997]

- 1-bit quantizer
- Two fully differential OTAs
- Pass gates as analog switches
- Single-ended Vref input
- 1-bit feedback DAC

Out1

architecture based on [Nieminen T. and Halonen K, NORCHIP 2010]

Digital part

SINC CIC Decimator

- 4th order
- Very efficient implementation
- Integrators are allowed to overflow

Half Band Decimator filters

- Images of the baseband are only suppressed
- Group delay: 1.35ms

Filter ID	Order	Normalized pass- band freq., <i>Eq</i>	Sampling frequency in kHz
HBF1	6	1/48	96
HBF2	10	1/24	48
HBF3	14	1/12	24
HBF4	22	1/6	12

I hit Delay

Radiation hardening: analog part

- Deep Trench Isolation (DTI) option cuts away the parasitic structures between PMOS and NMOS that may trigger SEL
- All NMOS transistors are of enclosed layout type (ELT) which greatly improve analog degradation due to TID effects (over-consumption due to severe leakage currents at edge formed parasitic channels)
- Relaxed layout rules

 \geq

Ground

- Radiation induced charges are trapped in the oxides or at Si interface.
- Over-consumption due to severe leakage currents at edge formed parasitic channels may lead to total loss of circuit functionality.

Radiation hardening: digital part

Technology level

Atmel ATMX150RHA 0.15µm is a rad-hard proven technology.

Library level

- Oversized and robust standard cells were use (including latches and fli flops).
- Digital design level
 - Global insertion of TMR in FSMs and counters
 - Synchronous reset

Layout

 IP core area 6.45mm²

AC performance, low sampling rate

Figure 1: PSD for File id1 of Table 5 (f_{MCLK}=1MHz, 488Sps)

- Full Scale-to-Noise Ratio (FSNR):
 - **\Box** FSNR = 20.log₁₀(FS / RMS noise)
- where FS corresponds to the full scale input of the ADC and the RMS noise is the standard deviation of the perturbation of the amplitude of the measured signal.

Figure 12: RMS noise vs input level across temperature (vsupply=nominal, OSR=2048, f_{MCLK}=1MHz, fs=488Sps)

Table 5.	Low sampling	rate AC	performance
----------	--------------	---------	-------------

File idx	OSR	MEAN input voltage (V)	RMS noise (µV)	FSNR no post filter (dB) ⁽²⁾	ENOB no post filter (bit)	FSNR with post filter (dB) ^{(2),(3)}	ENOB with post filter (bit) ⁽³⁾
5	2048	3.250	19.6	106	17,7	119	19,7
4	2048	2.176	20.1	107	17,8	119	19,8
3	2048	1.453	14.8	107	17,8	119	19,8
2	2048	0.944	13.9	108	18,0	120	20,0
1	2048	0.583	13.2	108	18,0	120	20,0
6	2048	- 0.583	13.3	108	18,0	120	20,0
7	2048	- 0.944	13.8	108	18,0	120	20,0
8	2048	- 1.452	15.9	107	17,8	119	19,8
9	2048	- 2.175	22.3	107	17,8	119	19,8
10	2048	- 3.250	18.3	106	17,7	118	19,7

AC performance, high sampling rate

Figure 5: PSD for #21 of Table 6 (f_{MCLK}=15MHz, 234kSps)

- Maximum allowable clock: 17MHz
- Maximum sampling rate: 265kSPS @ OSR x64
- Bandwidth: 45kHz

fмс∟к (MHz)	OSR	Sampling rate (kSps)	FSNR >1Hz (dB)	ENOB (bits)
6	2048	3	108	18
6	1024	6	105	17.5
6	512	12	102	17
6	256	23	98	16
6	64	94	80	14

Noise vs. sampling rate

Power consumption

Figure 8. Total power consumption vs MCLK (Ta=21 deg.C, nominal supply voltages)

Figure 9. Core power consumption vs MCLK (Ta=21 deg.C, nominal supply voltages)

Time domain AC response

Figure 10. Sampled sine wave 0.16Hz, 3.2Vpp, at f_{MCLK}=1MHz, OSR=2048, 488 Sps

Figure 11. Sampled ramp signal 24Hz, 3.2Vpp, at f_{MCLK}=15 MHz, OSR=64, 234 kSps

Performance summary

Parameter	Condition	min	typ	max	Unit
Dynamic range	VIN=VINAP-VINAN differential	-3.3		+3.3	V
SNR	BW = 1Hz to 288 Hz to Nyquist frequency w.r.t to Full-Scale FSNR , -55 $^{\circ}$ C \leq Ta \leq +125 $^{\circ}$ C	108		105	dB
Noise	f _{MCLK} =1 MHz, OSR=2048 Sampling rate 488 Sps	13.2		22.3	μV_{RMS}
ENOB(*)	BW = 1Hz to 288 Hz to Nyquist frequency (*) without post processing	17.6		18	Bit
Sampling rate	Typ: OSR=2048x Max: OSR=64x		6	265	kSps
Core power consumption	-55ºC ≤ Ta ≤ +125ºC			50	mW
Total power consumption	C _L =5pF, Ta=21°C		25	80	mW
INL	Corresponding to 33% of FS and 17 bit resolution			1.5	LSB
Internal reference drift (band gap)	-55ºC ≤ Ta ≤ +125ºC		573		µV/°C

Test conditions & parameters

- Time & place: Sept. 2017 at ESA-ESTEC
- 4 irradiated samples + 1 control device
- During exposure
 - □ Irradiation of DUT under bias (max voltage)
- Between the exposures
 - □ **Supply current** at various op. modes
 - □ **Offset error** at var. sampling rates
 - **RMS noise, PSD, SNR, ENOB** at var. sampling rates

TID test bench

Figure 5.2: Measurement test bench at ESTEC

Figure 5.3: Irradiation setup at ESTEC Co60 facility

Radiation dose plan

5 irradiation steps	step	
Total accumulated dose 300krad Si	1 2	initial 21krad
Steady dose rate 59 rad/min	3	67krad 83krad
Total irrad. time 83h 56m	5	133krad 300krad
Annealing for 168h at ISD	7	anneal. 24h anneal. 168h
Ageing for 168h at ISD	9	ageing 168h

lrr. run	Total ionizing Dose (water) Gy	Total lonizing dose (Si) krad	Cummulative dose (Si) krad	Dose rate (water) Gy/h	Dose rate (Si) rad/min	Irr. Time (hh:mm:ss)
1	241,8	21,5	21,5	39,94	59,24	6:03:15
2	515,4	45,9	67,4	40,23	59,67	12:48:41
3	177,4	15,8	83,2	40,11	59,50	4:25:22
4	558,6	49,7	132,9	39,84	59,10	14:01:16
5	1848,0	164,5	297,4	39,63	58,78	46:37:53
Total	3341,2	297,4	297,4			83:56:26

Table 5.4: Radiation dose summary (Si deposition)

TID test results: DC parameters

TID test results: AC parameters

Figure 5.5: PSD, 100% (FS) input, SN11 initial

Figure 5.15: PSD, 100% (FS) input, SN11, 300krad

TID testing conclusion

- All the samples remained fully functional throughout the test campaign
- The leakage current of the digital core and the I/O pads increased by 13-20 times after the 133krad step but fully recovered at the end of the campaign
- Noise and SNR: no noticeable degradation in any of the sampling rates tested up to 300krad dose
- Target TID value ≥100krad confirmed

HI test bench

- FPGA based data capture platform
- Custom S/W development for experiment monitoring and data logging
- 3-CH SEL monitor
- Test signal DAC module
- 1MSPS full custom Data Acquisition card

POWER SUPPLIES

HI test bench at UCL

Figure 6.2: positioning of the test-bench inside the chamber

Figure 6.5: high temperature setup

Figure 6.3: HI test-bench overview

Test conditions & parameters

- Time & place: Dec 2017 at UCL Louvain in BE
- 24 test runs in total
- 3 irradiated samples
- Test parameter variation
 - \Box LET \rightarrow type of ion and/or incident angle
 - Supply voltage
 - □ Sampling rate
 - □ Temperature

Test signal

- □ Linear ramp ±0.5V differential
- Each slope quantized to 32 steps
- Period 1s
- □ Step duration: 15.6ms

HI testing conclusion

- All the samples fully functional throughout the test campaign
- All the tested samples immune to SEL, SEU, and SEFI up to LET of 88.4 MeV/mg/cm²
- Some SET on the analog and the I/O buffer consumption was observed, deemed as insignificant
- Target value for SEL immunity ≥70 MeV/mg/cm² confirmed

Conclusions

- Performance is beyond expectations
- Wider target accessible market
 - □ High reliability instrumentation and data acquisition
 - Precision test and measurement
 - Process control
- Radiation endurance exceeded the target specifications

Thank you for your attention! Questions?