

MICROCHIP Aerospace & Defense BU

Radiation Characterization

ATMX150RHA Rad-Hard Platform The solution for mixed-signal ASIC

Project supported by CNES

June 20, 2018

ATMX150RHA PD-SOI 150nm Technology

- □ Funded by CNES (Centre National d'Etudes Spatiales)
 - Evaluation and Qualification of ATMX150RHA ASICs offer
 - Radiation Evaluation of LDMOS: TID and SEB/SEGR

CNES CONTRACT n° 4500037909 / DCT094 of 2011.09.27

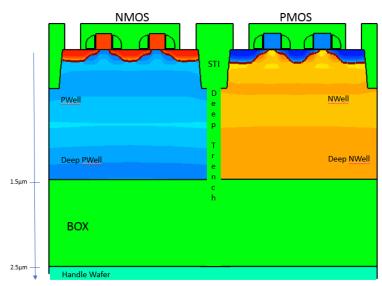
CNES CONTRACT n° 4500044431 / DCT094 of 2013.10.24

Radiation Characterization of other devices (HV, MOS 5V, Bipolars & Capacitors) :
 TID and SEB/SEGR

CNES CONTRACT n° 4500053131 / DCT094 of 26.08.2016

Microchip ATMX150RHA Rad-Hard CMOS 150nm cell-based ASIC family Radiation Characterization Test Report - Total Dose (TID) and Single Event Effects (SEE)

eric.leduc@microchip.com severine.furic@microchip.com david.truyen@microchip.com david.dangla@cnes.fr


ATMX150RHA – GENERAL FEATURES

□ 150nm SOI CMOS process

- □ 5 Level Metals + Thick Metal AlCu / 1.8V core supply
- □ Life time 20 years at Tj=110°C
- Dual deep-well for SEL immunity
- Deep Trench option

Hardened Library

- Logic std cells and DFF
- □ Hardened I/Os 5V, 3.3V & 2.5V, LVDS, PCI
- High Voltage Devices
 - 25V, 45V LDMOS
- A catalog of pre-qualified analog blocks
 - □ Regulators/ PLL/ RC-Oscillator/ BandGap/ Comparator/ Analog-MUX/DAC-ADC...
- □ Virage compiler of SRAM/DPRAM/ROM
- □ Qualification of Hardened ASICs (-55°C to 125°C) up to 22MGates equivalent NAND2
 - Standard Evaluation Circuit (SEC) with 44M transistors

View of ATMX150RHA technology

ATMX150RHA – PDK Devices Content

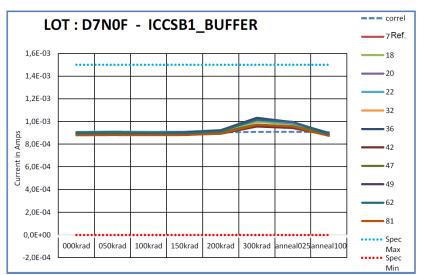
Device type	Domain	Device Name	77KRHA 1.8V/3.3V 5V 250Å	77K9RHA 1.8V/3.3V 5V 250Å oxide HVEE-NVM
			37 masks	47 masks
	1.8V	Nfet - Pfet	•	•
		Nfethvt - Pfethvt		•
	3.3V	Nfetox3 - Pfetox3	•	•
		Pfetox3hw	•	•
		Nfetox3de	•	•
		Nfetox3de_esd	•	•
		Nfetox3_ring	•	•
		Nfetox3de_ring	•	•
	5V	Nfetox5 - Pfetox5	•	•
N/P MOS		Nfetox5de - Pfetos5de	•	•
		Nfetox5de_esd Pfetox5de_esd	•	•
		Nfetox5_ring	•	•
		Nfetox5de_ring	•	•
	HV	nwhvfet		•
		nmvfet		•
		nmvafet		•
		nhvfet/phvfet		•
		nhvfet_ring		•
		phvafet		•
	25V	Idnfet25 / Idpfet25		•
LDMOS	45V	Idnfet45 / Idpfet45		•
		pnp_vert_b	•	•
BIPOLAR		Inpn	•	•

ATMX150RHA – PDK Devices Content

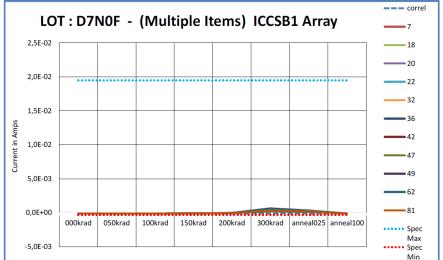
Device type	Domain	Device Name	<u>77KRHA</u> 1.8V/3.3V 5V 250Å	77K9RHA 1.8V/3.3V 5V 250Å HVEE-NVM
		dfreew_esd		•
		dfreew120_esd		•
DIODE		dz_6p2		•
		dz_6p2_esd		•
		nd3p3_esd	•	•
		schottky	•	•
		cmim34	•	•
		Momcap – Moscap	•	•
CAPACITOR		moscapox3	•	•
		Moscaphv	•	•
		P2bncap		•
		Rplow – Rphigh	•	•
RESISTOR		Rpolysh	•	•
KESISTOR [Rpolyhigh	•	•
		Rnsd - Rpsd	•	•
OTUED		Fuse	•	•
OTHER		hwc		•

PDK 2.8 delivered with

- Radiation Characterization report
- Generic and Aerospace design rules
- Generic and Hardened Pcell library with associated electrical models (Spectre, Hspice, Eldo)


ATMX150RHA – Total Ionizing Dose

Tests in compliance with ESCC 22900 & MIL-Std 883 TM1019

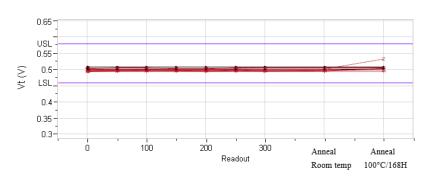

Total Ionizing Dose (TID) - Digital offer qualification

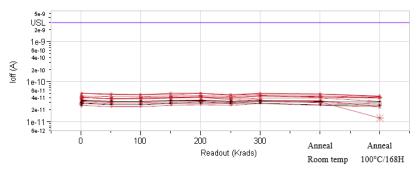
- 1.8V and 3.3V devices (Standard Evaluation Circuit SEC)
 - Successfully tested up to 300krad(Si) with ELT * 3.3V devices

3.3V IOs buffer Stand-by current vs cumulative dose Specification=1.5E-3 A

1.8V Core Stand-by current vs cumulative dose Specification = 2E-2 A

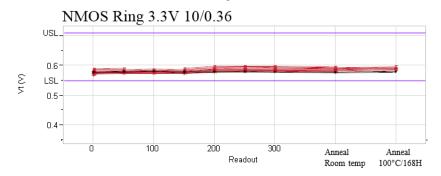
QML-RHA level R Qualified up to 100 krad(Si) RHA

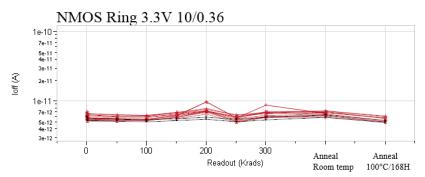



ATMX150RHA – Total Ionizing Dose

Tests in compliance with ESCC 22900 & MIL-Std 883 TM1019

Total Ionizing Dose (TID) - Digital offer qualification


1.8V elementary devices - NMOS



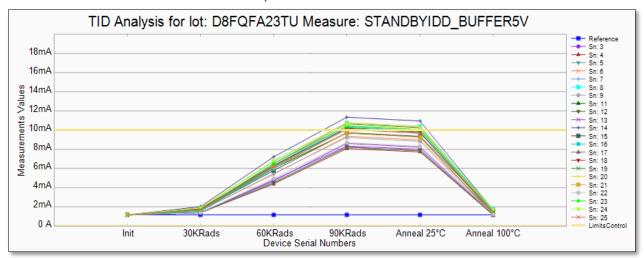
Threshold Voltage and Subthreshold current of NMOS 1.8V vs Cumulated Dose

□ 3.3V elementary devices - NMOS

Threshold Voltage and Subthreshold current of NMOS 3.3V ELT vs Cumulated Dose

TID supply conditions

Devices	Drain	Source	Gate	Body	HWC	NB
NMOS	0V	0V	3.6V	0V	0V	0V


ATMX150RHA – Total Ionizing Dose

Tests in compliance with ESCC 22900 & MIL-Std 883 TM1019

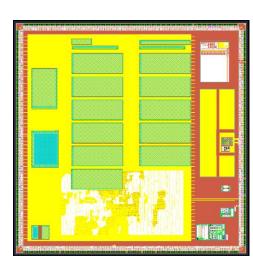
Total Ionizing Dose (TID) - Digital offer qualification

- 5V devices (Standard Evaluation Circuit SEC) : IO5V
 - TID sensitivity increased due to 250 Å oxide (same as HV devices)
 - Successfully tested up to 60 krad(Si) with ELT* layout

5V IOs buffer Stand-by current vs cumulative dose Specification=10 mA

QML-RHA level P

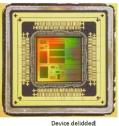
up to 30 krad(Si) RHA



ATMX150RHA – Single Events

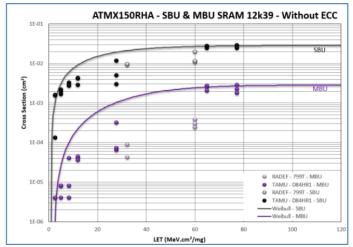
Tests in compliance with ESCC 25100 & MIL-Std 883 TM 1020

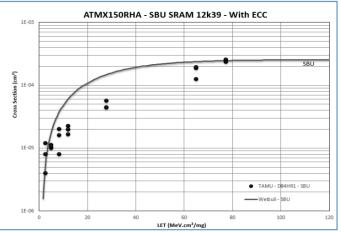
Single Event Effects Digital offer qualification


- ☐ Single Event Latch-up @ Vcc_{max}, 125°C
 - ☐ Full SEL Immunity by Deep trench
 - ☐ Dual Deep Well solution for high integration
 - \rightarrow SEL LET_{th}> 78MeV.cm²/mg

Standard Evaluation Circuit of ATMX150RHA

ATMX150RHA — Single Event Upset Tests in compliance with ESCC 25100 & MIL-Std 883 TM 1020

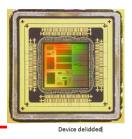



Single Events Upset (SEU): RAM Virage compiler

MBU/SEU Hardening by Scrambling and ECC

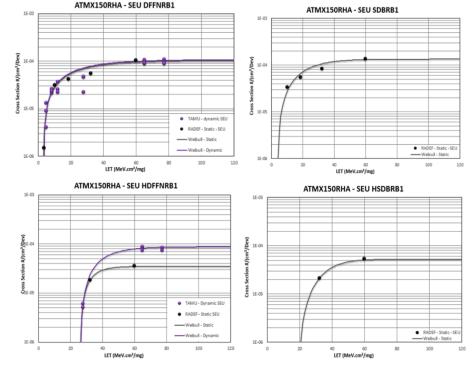
Memory	LET threshold	SEU Xs	Weibull	param.
type	(MeV.cm²/mg)	(cm²/dev)	W	S
SRAM16k32	1	3.61E-2	24	1.2
SRAM12k39	1	2.85E-2	24	1.2
DPRAM6k39	1	1.95E ⁻²	22	1.0
DPRAM2k8	1	1.15E-3	25	0.9
TPRAM 1k16	1	5.55E-4	30	0.8
SRAM12k39	1	2.56E-4	30	1.3
with ECC	•	2.502	30	1.5
DPRAM6k39	3.3	1.30E-5	28	1.2
with ECC			***	
Memory	LET threshold	MBU Xs	Weibull param.	
type	(MeV.cm²/mg)	(cm²/dev)	W	S
SRAM16k32	2	1.74E ⁻³	40	1.8
SRAM12k39	2	2.84E ⁻³	40	1.8
DPRAM6k39	2	2.43E ⁻³	34	1.4

Summary of the SBU/MBU Weibull parameters (LET_{th}, cross section, W & S) for main RAMs Virage



SBU/MBU cross section vs LET -12k39mux16 SRAM with/without ECC

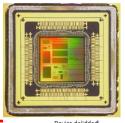
ATMX150RHA — Single Event Upset Tests in compliance with ESCC 25100 & MIL-Std 883 TM 1020



Single Events Upset (SEU): Register files

HDFF LET > 26 MeV.cm²/mg

Memory	LET threshold	SEU Xs	Weibull param.		
type	(MeV.cm ² /mg)	(cm²/dev)	\mathbf{W}	S	
DFFNRB1	3.0	1.08E ⁻⁴	22	1.0	
DFFNRB2	3.6	1.14E ⁻⁴	22	1.0	
SEU hard. DFFNRB1	26	8.70E ⁻⁵	16	1.2	
SEU hard. DFFNRB2	26	1.06E ⁻⁴	16	1.2	
Scan Std DFF SDBRB1	3.6	1.34E ⁻⁴	20	1.3	
Scan Std DFF SDBRB2	3.6	1.06E ⁻⁴	20	1.1	
Scan SEU hard. DFF SDBRB1	18.5	5.25E ⁻⁵	20	1.7	
Scan SEU hard. DFF SDBRB2	18.5	4.00E ⁻⁵	22	1.7	


Summary of the SBU/MBU Weibull parameters (LET_{th}, cross section, W & S) for main Register Files

SEU cross sections of shift registers in cm²/device a device is a chain of 1024 DFF

ATMX150RHA – SER synthesis

RAM Virage compiler

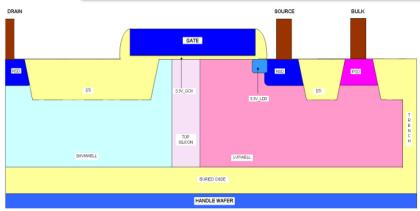
SRAM - GEO mission pr	MTBF			
	SER	Device	Word	bit
	(/dev/day)	(day)	(year)	(year)
SEU 16k x 32	4.59E-01	2.18	98	3129
SEU 12k x 39	3.47E-01	2.88	97	3784
SEU 12k x 39 w ECC	6.99E-04	1431	48163	1878347
MBU 16k x 32	1.16E-03	862	38696	
MBU 12k x 39	2.06E-03	485	16343	

DPRAM - GEO mission	MTBF			
	SER	Device	Word	bit
	(/dev/day)	(day)	(year)	(year)
SEU 6k x 39	4.22E-01	2.37	40	1556
SEU 2k x 8	2.64E-02	37.88	213	1700
SEU 6k x 39 w ECC	2.27E-05	44053	741536	28919920

DFF

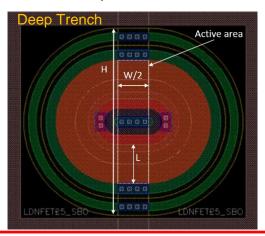
DFF - GEO mission profile	MTBF	
	SER	Device
	(/DFF/day)	(year)
DFF drive 1	7.81E-07	3508
Scan DFF drive 1	6.40E-07	4281
Hardened DFF D1	3.75E-09	730594
Hardened Scan DFF D1	2.50E-09	1095890

Environmental Conditions


using OMERE Solar Min Z=1 to 92 Aluminum shielding of 1g/cm²

ATMX150RHA - LDMOS 25V & 45V

LDMOS Characterization


high voltage lateraly diffused LDMOS

LDNMOS 25V with SBO configuration schematic cross section

□ 3.3V Gate oxide

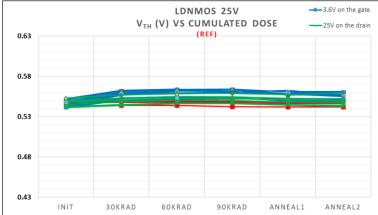
- Enables to pass up to 45V on Drain
- Long diffused Drain to increase R_{ON}
- Ring layout enclosed by Deep Trench : Full SEL immunity

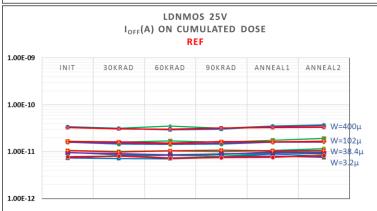
ATMX150RHA – LDMOS 25 & 45V

☐ Cumulated Dose on LDMOS

Supply conditions during irradiation

Devices	H (µm)	Drain	Source	Gate	Body	HWC	NB	Read outs krad(Si)
LDNMOS	10.76	0V	0V	3.6V	0V	0V	0V	30, 60, 90
LDPMOS	10.36	0V	25V	25V	25V	0V	0V	30, 60, 90
Devices	Н	Drain	Source	Gate	Body	HWC	NB	Read outs
	(µm)							krad(Si)
LDNMOS	12.76	0	0	3.6V	0	0V	0V	30, 60, 90
LDPMOS	13.56	0V	45V	45V	45V	0V	0V	30, 60, 90

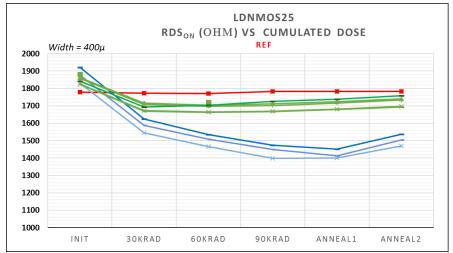

- No drift up to 90krad(Si)
 - Threshold voltage (Vt)
 - Saturation current (I_{ON})
 - Subthreshold leakage current (I_{OFF})
- Drift with dose on Drain/Source On resistance (Rds_{on})
- No gate rupture
- □ Post radiation model @30krad(Si) for LDMOS 25V & 45V



ATMX150RHA – LDMOS 25V

■ LD NMOS 25V on cumulated dose

- LDMOS 25V & 45V Evaluation
 - Threshold voltage (Vt)
 - Subthreshold current (I_{OFF})


Radiation electrical model

@ 30krad(Si) RHA

- On Resistance (RDS_{ON})
 - Major drift managed by Gate supply

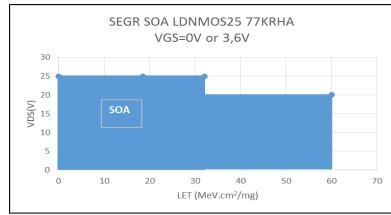
→ 3.6V on the gate

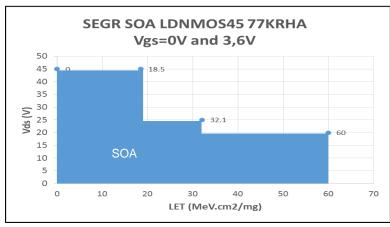
---25V on the drain

ATMX150RHA – LDMOS 25 & 45V

Single Event Burnout (SEB) & Single Event Gate Rupture (SEGR) on LDMOS

□ SEL immune by Deep Trench


 No SEB encountered up to 60 MeV.cm²/mg at Vcc_{max}, 25°C, 1E7#/cm²


SEGR LDPMOS:

■ No SEGR up to a LET of 60MeV.cm²/mg at Vcc_{max}, 25°C, 1E7#/cm²

SEGR LDNMOS

- No SEGR up to a LET of 60MeV.cm²/mg @ VGSmax and VDS=0V (25°C, 1E7#/cm²)
- SEGR encountered when drain supply: Safe Operating Area (SOA) (25°C, 1E7#/cm²)

ATMX150RHA – Conclusion

Further Works

- Cumulated dose Characterization
 - HV devices (15V oxide)
 - Capacitors
 - Bipolar transistors
- → Associated electrical model after TID
- → PDK delivery
- SEB / SEGR Characterization
 - HV devices (15V oxide)
 - Capacitors
 - Bipolar transistors
- → Associated Radiative SOA

© 2018 Microchip Corporation.

Microchip@, Microchip logo and combinations thereof, Enabling Unlimited Possibilities@, and others are registered trademarks or trademarks of Microchip Corporation or its subsidiaries. ARM@, ARM Connected@ logo and others are the registered trademarks or trademarks of ARM Ltd. Other terms and product names may be the trademarks of others.

Disclaimer: The information in this document is provided in connection with Microchip products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Microchip products, EXCEPT AS SET FORTH IN THE Microchip TERMS AND CONDITIONS OF SALES LOCATED ON THE Microchip ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL Microchip BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF Microchip HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Microchip makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Microchip does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Microchip products are not suitable for, and shall not be used in, automotive applications. Microchip products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.