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Abstract 

When radiation affects electronic equipment, bit errors 

are caused on the digital level. It is likely to avoid such 

errors especially on most significant bits (MSB). Stochastic 

computation (SxC) utilizes bit streams with all bits having 

the same significance. The information is, e.g., stored in the 

probability of ones. Single bit flips have less impact 

compared, e.g., to fix-point representation. Additionally, 

multiple errors can cancel each other out and reduce the 

impact of radiation even further. 

Using the example of a Fourier-Transformation, the 

reliability of the calculation for a fixed-point and a 

stochastic approach are compared. 

I. INTRODUCTION 

The significance of Fourier-Transformation is proved by its 

numerous applications. Its importance increased through the 

possibility of implementing it on hardware in the specialized 

form known as the Fast Fourier-Transform (FFT).  

For space applications, radiation is one of the most 

significant factors to be taken into account, when reliability of 

electronic equipment is in the focus. Long term usage and large 

temperature differences are present for electronic devices in 

satellites as well. On circuit level for terrestrial applications the 

keyword summing up these effects is PVTA, which is the short 

form for process variations (P), supply voltage variations (V), 

temperature (T) and aging (A). 

Regardless of the actual effect, bit-flips must be taken into 

account at the digital or algorithmic level. Within a fixed-point 

representation, such errors have of course the highest impact 

on the MSB. On the contrary stochastic computation use bit-

streams and store the information in the frequency of logical 

1’s or the ratio of logical 1’s to 0’s. This way all bits have the 

identical significance and the outlined impacts are expected to 

have less severe effects on the reliable calculation of the 

exemplarily chosen Fourier transform. 

In the following section II both approaches are presented 

followed by details about the model of the simulation setup. 

Using that simulation environment the performance of the two 

setups is analyzed in section III. The spectrums are calculated 

for different parameter setups to represent different 

environmental conditions, e.g., caused through a mission 

duration or profile. In section IV further details about an 

implementation approach for the SxC setup are given 

according to the complexity and necessary logical modules. 

Finally, this work is concluded in section V. 

II. SIMULATION MODEL 

Two setups are compared with each other. On the one hand 

a double precision scaled fix-point FFT and on the other a 

stochastic DFT using the two-line bipolar representation. The 

results of both setups are referred to the MATLAB built-in fft() 

function.  

The basics of stochastic computation have been published 

in [1], among others. Using an unipolar encoding, values in the 

range of [0,1] can be represented. The probability of ones 

within the overall stream length corresponds to the information. 

By linking the ratio of 1’s and 0’s to the overall length a bipolar 

encoding is set up, extending the representable range to [-1,1]. 

Assuming uncorrelated streams, simple mathematical 

operations can be performed by logical gates. E.g., a real 

multiplication is achieved by an AND gate. If the square is 

needed one stream needs to be delayed to avoid the correlation. 

For each addition, OR gates are used next to further modules to 

take care about the overflows, e.g., by scaling. Further details 

are given in [5]. Nevertheless, the SxC approach offers high 

system clocks, much parallelism options and, as will be shown 

in the next section, high reliability without using expensive rad-

Hard components.  

[2] and [3] showed approaches of a stochastic FFT and DFT 

introducing an unscaled adder and a stochastic representation 

using a sign- and magnitude stream. In contrast to those first 

publications on stochastic DFT/FFT, another encoding form is 

used here: The two line bipolar representation, which separates 

between real and imaginary part and for each between the 

positive and the negative part. The total of 4 streams are 

portrayed with 1024 bits each. It should be mentioned, that the 

type of representation as well the usage of a bipolar or unipolar 

encoding on the one hand defines the range of representable 

values, and on the other it has a distinct influence on the later 

on discussed performance. The way how the arithmetic’s needs 

to be implemented, the necessary or used amount of bits and of 

course the achievable precision of the representation. 

Implementing an algorithm like the FFT, temporal back-

conversions to the decimal domain may be necessary.  

The fixed-point (FI) representation is well known and 

documented. Within this work, the setup works with double 

precision and thereby utilizes 64 bits per real and imaginary 

part.  

The overall system setup is shown in Figure 2: From an 

analog time signal, considering out of the superposition of four 

trigonometric functions, 64 samples are taken and converted to 
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the digital domain using the shown ADC. The input signal is 

shown in Figure 1.  

 

Figure 1: Input Signal 

The PVTAR faults are applied to the digital samples of the 

input signal assumed to be stored within D-FlipFlops (FFs) in 

the shown N-bit buffer. The twiddle factors are assumed not to 

be affected.  

 

 

Figure 2: Simulation Setup 

The error model, affecting the digital representation, is 

based on the analog circuit design. In detail, the PVTAR effects 

are simulated for each transistor in the D-FF circuit separately 

and summed up to model the FF in total. An error on bit level 

is injected, if the subsequent logical devices copy a false value 

compared to the FF input. The error model was published in 

[4]. 

III. PERFORMANCE ANALYSIS 

As mentioned in section II the FI approach utilizes 64 bits 

twice, while the SxC system encodes each sample with four 

times 1024bits. In the first place, no PVTAR effects shall be 

present. The FI system is able to show its expected very high 

accuracy and precision (absolute error in order of 10-16) in 

Figure 3, while the SxC setup is able to achieve an absolute 

error (compared to the built-in reference function) in the range 

of 10-3, which is comparable to the inverse of the length of the 

bit-stream. Note that for each spectral sample the mean of 100 

iterations is calculated. This holds for all following results. 

However, both approaches offer very good spectral 

analysis. The first results match to the expectations, due to the 

binary representation techniques/encoding of the systems.  

 

 

Figure 3: Performance without PVTAR 

Next, both systems are analyzed in a more realistic 

scenario, considering to be used in space. The simulations 

parameters compromise process variations, a supply voltage of 

0.8V, an operational temperature of 60°C, a Linear Energy 

Transfer (LET) of 500keV/µm and no aging/new devices. The 

spectrums are calculated according to the input signal given in 

Figure 1.  

 

Figure 4: SxC spectrum with reference for P, V=0.8V, 

T=60°C, R=500keV/µm 

In Figure 4, the calculated SxC spectrum is shown next to 

the reference of the MATLAB built-in function only. As the 

error for the FI setup increases from the first case (no PVTAR) 

to the order of ~10+300 the visualization is skipped in Figure 4. 

This means, that the FI approach is unusable within an 

exemplarily space mission. No reliable FFT can be calculated 

for the assumed parameter set. Additional radiation hardening 

techniques or certain devices are obviously necessary for a 

reliable FI processing. On the other hand, the SxC approach 

loses, due to the PVTAR impact, roughly one order of the 

magnitude considering the absolute error. However, a good 

approximation of the given reference spectrum is still achieved 

and visualized in Figure 4, even when no certain space 

qualified devices are assumed. These results motivate to take a 

closer look on the achievable performances with the SxC 

encoding type, as well to find a limit for the FI approach.  

Figure 5 depicts the FI spectral results for two different 

cases. The parameters are set as follows: disabled process 



variations, a supply voltage of 0.9V, a temperature of 20°C and 

a LET of 150keV/µm (case 1) or 250keV/µm (case 2).  

 

Figure 5: FI spectrums for P=0, V=0.9V, T=20°C, R=150 bzw. 

250keV/µm 

The moderate temperature and supply voltage enable the 

evaluation of the sensitivity of the FI approach for mainly 

radiation impacts. The mean of the absolute error is in the same 

order for almost both cases, but the precision for the low 

radiation case suffers from an offset. Therefore, the spectrum 

is still very accurate to the given reference. Increasing the LET 

(case 2) is it obvious, that the quality of the calculation 

decreases. According to the results visualized in Figure 4, it can 

be concluded that the FI setup has a limited usability with 

commercial of the shelf (COTS) components.  

As the SxC approach already showed significantly more 

accurate results for higher PVTAR impacts (cmp. Figure 4), 

these two parameter sets are not to be considered for the SxC 

implementation. Instead, higher radiation is applied to figure 

out its upper limit. The simulation parameters are: P=on, 

V=0.9V, T=120°C, R=750keV/µm. The results are shown in 

Figure 6.  

 

Figure 6: SxC spectrum for P=1, V=0.9V, T=120°C, 

R=750keV/µm 

The mean of the absolute error is in the same order as the 

first case, discussed and presented next to Figure 4. Out of this, 

it becomes clear that even a LET of 750keV/µm achieves 

sufficient results in terms of accuracy and especially precision. 

However, for occasional uses the upper limit for radiation 

impact is even further extendable. 

 

 

IV. SXC COMPLEXITY 

A. Stochastic arithmetics 

In section II, it was pointed out, that the SxC approach 

offers the usage of logical gates to perform simple arithmetic 

calculations. In detail, this depends on the representation type, 

meaning an exemplary multiplication can be performed by a 

single AND gate in a single line, unipolar representation type, 

using XNOR’s for a bipolar single-line approach and several 

AND gates for the two line bipolar format.  

For SxC-based additions, it needs to be ensured, that no 

overflow will occur. One possibility to avoid any result out of 

the limited range, is to introduce an additional scaling. In [2] 

an alternative approach is presented considering a sign and 

magnitude stream as well as additional counters.  

B. Stochastic DFT 

In order to perform the discrete Fourier Transformation 

(DFT), shown in Equation (1) a bipolar representation offering 

the in- and outputs with positive and negative signs is usually 

chosen.  

𝑋[𝑛] = ∑ 𝑥[𝑘] ∙ 𝑒−𝑗
2𝜋𝑘𝑛
𝑁

𝑁−1

𝑘=0

 (1) 

Out of equation (1) it becomes clear, that complex values 

must be handled. Hence, the stochastic representation separates 

between the real and the imaginary part. For the calculation of 

the algorithm this needs to be taken into account. The two-line 

bipolar representation finally uses in total four streams.  

The processing of every DFT point, thereby requires 16N 

multiplications, each one performed by a logic AND gate. As 

the positive and the negative, as well as the imaginary and the 

real part, are considered separately the final addition requires a 

large multiplexer with 16N inputs and four outputs (one for 

each stream). The control signal of the multiplexer uses 

arbitrary binary numbers of log2(4𝑁) length. The entire 

scheme of the implemented DFT is given in Figure 7.  

Alternatively, the DFT can be set up with scaling free 

adders (cmp. [2]). This would result in four streams as well 

(sign + magnitude for real and imaginary part), and a 

multiplication needs 4N AND’s for the magnitude streams and 

4N XOR’s for the sign streams. Two further additions per 

multiplication and one N-point sum per real and imaginary part 

are necessary to complete one complex multiplication in that 

case. A high sensitivity against overflows is a huge drawback 

for this way of implementation. The two line bipolar approach, 

can be expected to give higher accuracy and was therefore the 

preferred choice. 

C. IC-Implementation 

A synthesis of the two-line bipolar approach was realized 

for 65nm CMOS technology using the Cadence Genus 

Synthesis tool for length from 16 to 256 points. For a 64 point 

implementation without pipelining, a frequency of 600MHz 

was achieved using an area of 364µm² and less than 55mW 

power consumption.  



V. CONCLUSION  

As it was stated in the ECSS-E-ST-10-12 document, “there 

is no space system in which radiation effects can be neglected.” 

The effect of radiation is one of the PVTAR effects modeled in 

this work to simulate its impacts on the digital level. 

Exemplarily, the well known and in numerous (space) 

applications used Fourier-Transform, it was shown, that the 

SxC encoding scheme outperforms the common FI approach 

according to the precision and accuracy in the presence of 

multiple bit errors.  

The benefits of very high system clocks and parallel 

computing possibilities compensates more than the drawbacks 

stemming from the increased number of the overall used bits, 

or the remaining imprecision for ideal conditions.  

All in all, it was discussed, that different stochastic 

encoding types have its own pros and cons, which needs to be 

taken into account for developing or adapting an algorithm. 

The two line bipolar setup emerges good for the presented DFT 

application but does not need to be the best choice in every 

case.  

Furthermore, the precision of the SxC approach benefits 

from longer bit streams. Studies on this aspect were presented 

in [5]. 
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Figure 7: Schematic for two-line bipolar N point DFT, with scaling free adder used for the subtraction. 


