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Introduction 

• Background 

 

• Several studies on future launch vehicle configurations and  

technologies for expendable and reusable launch vehicles  

have been extensively conducted in the past at DLR 

 

• Currently, partly or fully reusable launch vehicles using  

different return methods are investigated at DLR in the  

context of the research projects AKIRA and X-TRAS 

 

• Goal: 

 

• Modeling and simulation of launch vehicle  

system dynamics for the subsequent  

development of advanced control systems 
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Introduction 

• Challenges: 

 

• Highly interconnected disciplines 

• Changing environmental conditions 

• Changing mission types and requirements 

• Consistent modeling for each level of detail 

 

 

• Objective: 

 

• Development of a multibody modeling and 

simulation framework for preliminary design 

studies of reusable launch vehicles 

 

• Multidisciplinary 

• Object-oriented 

• User-friendly 

• Flexible 
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• Trajectory 

• Performance 

• Controllability 

• GNC design 

Unified database: 

• Computation 

• Preprocessing 

• Integration 

Integrated Launch  

Vehicle Model 

 

 

 

3 DoF 

inverse 

6 DoF 

inverse 

6 DoF + elastic DoF 



Overview 

1. Object-oriented Modeling with Modelica / Dymola 

 

2. Launch Vehicle Modeling, Guidance, and Control Framework 

 

• Launch Vehicle Modeling 

• Trajectory Optimization 

• Nonlinear Inverse Modeling 

 

3. Simulation Case Study: Aurora Descent Flight  

 

4. Summary & Outlook 
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Object-oriented Modeling with Modelica / Dymola 
 

• Modelica: object-oriented modeling language 

 

• Modeling of physical systems 

• Multidisciplinary (e.g. mechanics, electrics) 

• Acausal description (equation-based) 

• Algebraic, discrete and differential equations 

 

𝑭 𝒙 𝑡 , 𝒙 𝑡 , 𝒚 𝑡 , 𝑡 = 0 

 

• Dymola: simulation environment based on Modelica 

 

• Automatic code generation 

• Graphical and textual programming 

• Supports model exchange and co-simulation 

 

• Applications: automotive, aerospace, robotics, … 

> Multidisciplinary Modeling and Simulation Framework for Reusable Launch Vehicle System Dynamics and Control > L. E. Briese, P. Acquatella B., K. Schnepper > 07.11.2018 DLR.de  •  Chart 5 

schema 

code 

simulation 



Object-oriented Modeling with Modelica / Dymola 
Classic vs. Acausal Modeling Approach 

 

• Classic Modeling Approach: 

 

• Subsystems considered as “signal processors” 

• Flow direction defined by fixed inputs & outputs 

> Multidisciplinary Modeling and Simulation Framework for Reusable Launch Vehicle System Dynamics and Control > L. E. Briese, P. Acquatella B., K. Schnepper > 07.11.2018 DLR.de  •  Chart 6 

• Acausal Modeling Approach: 

 

• Subsystems considered as “energy exchangers” 

• Combination of flow and potential variables 

Combination of Classic and Acausal Modeling in Modelica 

𝒓𝐴 = 𝒓𝐵 

𝑹𝐴 = 𝑹𝐵 

𝟎 = 𝒇𝐴 + 𝒇𝐵 

𝟎 = 𝒕𝐴 + 𝒕𝐵 

A 

 

B 
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Launch Vehicle Modeling Framework 
General Overview 

• Multidisciplinary Modeling Approach 

 

• Environment   gravity, atmosphere, … 

• Kinematics  states, transformations, … 

• Dynamics   stage, aerodynamics, engines 

• Unified database   user-defined inputs and outputs 

 

• Object-oriented Modeling Approach 

 

• Modular, user-friendly, adaptive 

• Acausal and equation-based 

• Replaceable components 

 

• Consistent modeling: 

• 3-DoF (point mass) 

• 6-DoF (point mass, multibody) 

 

• Supported by Modelica-based Libraries (DLR-SR) 
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Launch Vehicle Modeling Framework 
Environment 

• Based on the DLR Environment Library 

• Visualization of Earth, Sun & Moon 

 

• world:  

• Geocentric / geodetic Coordinate Systems 

based on World Geodetic System WGS’84 

• Gravitational Models, such as EGM96 

 

• geosphere:  

• Atmosphere Models, such as ISA or NRL-MSISE-00 

• Considers geoid undulation and height above MSL 

 

• current:  

• Provides wind profiles (including turbulence models) 

• Applies wind forces individually to each launch vehicle  

based on current atmospheric conditions (geosphere) 
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Launch Vehicle Modeling Framework 
Kinematics 

• Provides flight coordinate systems and physical transformations 

 

• Allows individual state selection based on simulation study 

 

• Position defined by latitude, longitude, altitude 

(considering spherical or ellipsoid planet definition) 

 

• Velocity typically defined using flight path parameters 𝑉, 𝛾, 𝜒   

• Singularity (𝛾 = 90°) can be avoided by velocity vector w.r.t. NED 

 

• Orientation defined by Euler Angles Ψ (yaw), Θ (pitch), Φ (roll) 

• Singularity (Θ = 90°) can be avoided by Euler-Rodrigues quaternions 

 

• Angular Rates defined w.r.t. body fixed coordinate system 
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Launch Vehicle Modeling Framework 
Dynamics 

• Equations of Motion (6-DoF) 

 

• Newton-Euler Equations of Motion implemented per default:  

 

 
𝑚𝑰3 0
0 𝑰𝐵

  
𝒂𝐵
𝜶
 +  

0
𝝎 × 𝑰𝐵𝝎

 =  
𝑭
𝑴
  

 

• For variable mass dynamics, the Equations of Motion are extended by: 

 

 
𝑚𝑰3 0
0 𝑰𝐵

  
𝒂𝐵
𝜶
 +  

0
𝝎 × 𝑰𝐵𝝎

 +  

d𝑚

d𝑡
𝒗𝒓

d𝑰𝐵
d𝑡

𝝎

 =  
𝑭
𝑴
 +  

𝑭𝐶2
𝑴𝐶2

  

 

• Equations of Motion (3-DoF) 

 

• Time-scale separation between translational & rotational dynamics 

• Angular velocities & accelerations are automatically set to zero 
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Launch Vehicle Modeling Framework 
Dynamics 

• Forces and moments are provided by dedicated replaceable components 

• Gravity (stage):  𝑭𝐺
𝑁  =   

𝑚𝑔𝑥
𝑚𝑔𝑦
𝑚𝑔𝑧

    

• Thrust (engines):  𝑭𝑇
𝐵  =   

𝑇
0
0
    e.g. with 𝑇 = 𝑐𝑠 𝑇𝑣𝑎𝑐 − 

𝑝

𝑝0
𝑇𝑣𝑎𝑐 − 𝑇𝑠𝑙  

• Aerodynamics:  𝑭𝐴
𝑆   =   

−𝐷
   𝑌
−𝐿

   =
1

2
𝜌𝑉2𝑆𝑟𝑒𝑓  

−𝑐𝐷
   𝑐𝑌
−𝑐𝐿

  

 𝑴𝐴
𝐵   =   

𝑙
𝑚
𝑛
   =

1

2
𝜌𝑉2𝑆𝑟𝑒𝑓  

𝑙𝑟𝑒𝑓𝑐𝑙
   𝑏𝑟𝑒𝑓𝑐𝑚
𝑙𝑟𝑒𝑓𝑐𝑛
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𝛿𝑓𝐿 = 𝛿𝑒 + 𝛿𝑎 

𝛿𝑓𝑅 = 𝛿𝑒 − 𝛿𝑎 

Launch Vehicle Modeling Framework 
Aerodynamics 

• Aerodynamic coefficients provided by DLR-RY (CAC, Hotsose) 

• Aerodynamic database mainly dependent on the chosen level of detail  

 

• 3-DoF (e.g. trajectory optimization) 

• Only translational lift & drag coefficients with 𝒄𝐴 =  𝑓 𝑀𝑎, 𝛼  

 

• 6-DoF (e.g. preliminary controllability studies) 

• Full aerodynamic coefficient matrix with 𝒄𝐴 =  𝑓 𝑀𝑎, 𝛼  

 

• Extended 6-DoF (e.g. for winged reusable launch vehicles) 

• Full aerodynamic coefficient matrix considering   

aerodynamic angles, rates, deflection angles 

 

𝒄𝐴 =

𝑐𝐷
𝑐𝑌
𝑐𝐿
𝑐𝑙
𝑐𝑚
𝑐𝑛

=

𝑐𝐷,𝛼 + 𝑐𝐷,𝛿𝑎 + 𝑐𝐷,𝛿𝑒 + 𝑐𝐷,𝛿𝑟
𝑐𝑌,𝛿𝑟

𝑐𝐿,𝛼 + 𝑐𝐿,𝛿𝑎 + 𝑐𝐿,𝛿𝑒
𝑐𝑙,𝛿𝑎

𝑐𝑚,𝛼 + 𝑐𝑚,𝛿𝑎 + 𝑐𝑚,𝛿𝑒
𝑐𝑛,𝛿𝑟

 

> Multidisciplinary Modeling and Simulation Framework for Reusable Launch Vehicle System Dynamics and Control > L. E. Briese, P. Acquatella B., K. Schnepper > 07.11.2018 DLR.de  •  Chart 13 



Trajectory Optimization 
Optimal Guidance 

• Coupling of Modelica models with the Matlab-based  

trajectory optimization framework MOPS TrajOpt 

 

• 3 DoF multibody model of the launch vehicle with  

aerodynamics angles and thrust throttle factor as inputs 

• Generation of a Functional Mock-up Unit (FMU)  

of the Modelica model using the FMI 2.0 Standard 

• Multi-objective and multi-phase trajectory optimization  

with MOPS TrajOpt using the FMU via multiple shooting 
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Nonlinear Inverse Modeling 

 

• Investigation of moment budgeting within preliminary design studies:  

 

• Implementation of 6-DoF Nonlinear Direct and Inverse Multibody Models 

• Computation of required moments in order to follow optimal reference trajectory 
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Case Study: Aurora by DLR-RY 
Horizontal Liftoff and Horizontal Landing 

• Delta-winged launch vehicle configuration (Aurora):  

 

• Two-stage to orbit configuration 

• Winged reusable main stage 

• Expendable upper stage 

 

 

• Multi-Phase definition: 

 

• Ascent (US + MS) 

• Horizontal liftoff 

• Ballistic phase and separation 

• Ascent (US) 

• Fairing release 

• Payload release 

• Descent (MS) 

• Descent flight to landing site 
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Case Study: Aurora by DLR-RY 
Results for Phase P5-a 

• Inputs of the nonlinear inverse model: angular rates 

• Outputs of the nonlinear inverse model: required moments 

 

 

 

 

 

 

 

 

 

• Nonlinear inverse model follows optimal guidance commands 

{𝜇, 𝛼, 𝛽} provided by the trajectory optimization 

• Position control is not considered! 
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Case Study: Aurora by DLR-RY 
Results for Phase P5-c 

• 6-DoF nonlinear inverse model contains full aerodynamic coefficient 

matrix (including moments) assuming deflection angles to be zero 

 
𝛿𝑎 = 𝛿𝑒 = 𝛿𝑟 = 0 

 

• Comparison with the cascaded nonlinear inversion control including 

aerodynamic surface deflections [Acquatella et al., IAC 2018]:  

 

• Additional aerodynamic moments to be provided by aerodynamic 

surface deflection angles are obtained by nonlinear inverse model 

 

∆𝑀 = 𝑀𝑒𝑥𝑡 +𝑀𝑎𝑒𝑟𝑜 

 

• The required deflection angles to fulfill ∆𝑀 can then be obtained 

by nonlinear inversion of the aerodynamic dataset (if possible) 
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Case Study: Aurora by DLR-RY 
Results for Phase P5-c (wind effects) 

• Wind effects have major impact on the calculation of the 

effective aerodynamic angles and required rates 

 

𝒗𝑤 → 𝒗𝑎𝑖𝑟 →  

𝜇
𝛼
𝛽
 

∗

→  
𝑝
𝑞
𝑟
 →  

𝑀𝑥

𝑀𝑦

𝑀𝑧

  

 

• The inverse kinematics compensates the disturbance 

introduced by additional wind velocities 

 

• Additional turbulence models can be superimposed to the 

wind profiles, if necessary (not used in this paper) 
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Summary & Outlook 

• Objective: Development of a multibody modeling 

and simulation framework for preliminary design 

studies of reusable launch vehicles 

 

• Method: Multidisciplinary, object-oriented modeling 

using Modelica / Dymola, including (automatic) 

nonlinear model inversion  

 

• Results: Trajectory optimization and moment 

budgeting of the reusable launch vehicle Aurora 

 

• Outlook: 

 

• Implementation of external perturbations 

• Investigation of parametric uncertainties 

and structural elastic effects 
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Thank you very much for your attention! 
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