A fast an efficient algorithm for the
computation of distant retrograde orbits

Martin Lara

GRUCACI — University of La Rioja, Spain

martin.lara@unirioja.es, mlaraO@gmail.com

7th International Conference on Astrodynamics Tools and
Techniques (ICATT)

DLR Oberpfaffenhofen, Germany, November 6 - 9, 2018



Background: Distant Retrograde OrDbits

DRO: co-orbital motion relative to the heavier primary

— same semi-major axis but slightly different eccentricity
— orbit about lighter primary out of its sphere of influence
— strong stability characteristics: quarantine orbits

— science orbit for objects with very low mass

DePhine proposal to ESA’'s Cosmic Vision Program
(Oberst et al. 2017, EPSC2017-539)

NASA's Asteroid Redirect Mission
(Abell et al., Lunar & Planetary Sci. Conference, 2017)

Numerical computation of (quasi) PO’'s of the RTBP
Analytical sol.: rough approximations (qualitative dynamics)
— improvements by perturbation methods



Outline

Recall basic facts of the Hill problem

— useful to test feasibility of the perturbations approach
Perturbation arrangement: distant retrograde orbits

— perturbed linear dynamics

LLow order analytical solution

— provides orbit design parameters

Higher order analytical solution

— Lindstedt series: captures the case of large librations
Sample applications

Conclusions



T he Hill problem

C
Planet

Satellite

e CR3BP: primaries M, m < M, S/C of negligible mass
— relative motion: rotating frame centered in the satellite
— simplifications: m < M, r < d, d planet-satellite distance
e Hamiltonian formulation H = H(X, x)
— conjugate momenta X = x4+ w X x



DRO: Perturbation of the linear motion

2
o H = %(XQ-I-YQ—I—ZQ) —w(zY —yX) — % (32?2 —r?2) - L
— quadratic part (linear motion) integrable

x relative motion of two bodies orbiting the third one
with Keplerian motion
x Clohessy-Wiltshire equations (J Aerospace Sci 1960)
— perturbation: Keplerian potential —% (or —% in Hill units)
e Perturbation: only if r is large enough in Hill units
— Hill units r > 1 >3"1/3x0.7
— motion out of Hill's sphere = co-orbital motion

e Trouble if r is not too large (close encounters)



e Focus on the planar case

— unperturbed motion: drifting
e Change to epicyclic variables:

(xa Y, X7 Y) — (Qb, q, Cb, Qv w)
semi-axis a = 2b (y axis)

= 2

eccentricity k =

3

4

¢. phase of the ellipse

(Benest, Celest Mech 13, 1976)

e Guiding center
— xc = Q/(kw) constant
— yc = 2kq = 2k(qgo — Qt) linear motion
— jicc such that Q = 0 = periodic motion
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Perturbed motion: drift may change to oscillatory motion
— epicycle: S/C travels along a large ellipse

— deferent: center of the epicycle moves on a small ellipse

Approximate solution by perturbation methods

H=H(¢,q,P,Q) =wd — (1/2)Q? —p/r, r=1(¢,q,P,Q)

— u — 0 (or r very large) linear growing of ¢ and ¢

— drifting ellipse in the y axis direction (Clohessy-Wiltshire)

Remove short-period effects by averaging ¢:

(6,0, D,Q) L (¢,¢, D, Qs €) | HoT =H(—,d, D, Q") + O(e")

— T depends on special functions
Evolution equations (in mean elements) are integrable
— low order of e: harmonic oscillator

— improved solution: Duffing oscillator (elliptic functions)

— high order of e: solution by Lindstedt series
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Low order solution

o K = wd' — %[Q/Q + QQQ/Q] + 7;(_’ q/’ CD’, Q/) + O(en)
— libration frequency Q = Q(d/; u, w)
— @'/ constant, decoupled dynamics
e Neglect P: On average
— (¢, @Q"): harmonic motion of frequency 2
q' = qpcos 2t — (Qp/S2) sin 2,
Q' = Qg cos Qt + Qqp sin 2t,
— ¢’ linear growth modulated with long-period oscillations
+ standard quadrature ¢/ = ¢ + Ot 4 Q[p(t) — p(0)]
O =w[l+ (Q?/w?)d], d=d(gh,QH P') >0
p= qo((lgk§2 ) cos 2t + q022((bc/2k)/2 )° sin 20,
x k= \/ﬁ eccentricity of the epicycle 6




Deferent evolves with harmonic oscillations
ro = 5Msin(Qt + ), yo = 2kM cos(Q2t + ),

= M = \/gp? + (Qp/)?, tany = Qp/(Qp)
— z0 =0 = max(yo) = 2kM

Orbit design parameters

— a = 2b: size of the epicycle

— min. y distance to the origin for x = 0: dy = a — 2kM
— compute iicc of max(yc): Qk\/q62 + (Qp/Q)% = a — dy

Periodic orbit (on average): commensurability between

— orbital period Ty = 27/,
— libration period T, = 27w/

Osculating: improve periodicity by differential corrections
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e Low order solution very good for small librations

— significance of short-period terms
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— initial conditions (0.1,20,—-10.5,-0.1)
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e Errors: epicyclic variables

Blue: mean elements. White: osculating elements
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High order solution

Low order: great insight / not so good for large librations
— poor prediction of the amplitude and libration period
Higher orders of the perturbation approach: Lindstedt series
— change ind. variable 7 = nt, replace n = Y ;> €'n;
— replace ¢ = Y50 €'qi(7), Q= Yi>0€'Qi(7)
— chain of differential systems solved sequentially
5 series required:
— time scale in which the Lindstedt series evolve (1 series)
— time evolution of the guiding center ¢/, Q' (2 series)
— phase ¢': linear growing + modulation (2 series)

* linear freq. & with which the S/C evolves (1 series)

x long-period modulation of the S/C’'s phase ¢’ (1 series)

Improved orbital and libration periods
.
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Lindstedt series: arranged in the form of Fourier series in €2
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Additional series for the phase ¢’

Quite effective evaluation
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Sample orbit with large libration: (0,10,-0.5,1)

analytical (Iow order)
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Guiding center: (0,10,-0.5,1)

analytical (low order)
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Close approach to the origin

e Periodic orbit of initial conditions (2.7163,0,0, —2.9724)




¢ — ¢p (deg)

n—=1na

1:1 resonant DRO a = dy

Design parameters a = 10 = &/ = 12.5,
dy =a = g5 = Qy =0, To = 6.24852
almost periodic: |z(T) — x(0)| ~ | X(T) — X(0)| = 103
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Periodicity improved by differential corr. ~ 1013 9



Multiple resonant DRO: ¢ =10, dy =5

e Design parameters a = 10 = &' = 12.5, Q ~ w/20
dy =5 =, ¢5 =0 Qf = 0.141645,
— but p=1T7,/Tpo = 18.3 ... non-periodic
e Find Aa such that p integer/rational, by iterations
— dy, g = 0, fixed
— p=Tr(Qp(P"), ") /To(Qp(P"), ") = p(P')
e Secant method a =9.87661, 1Ty, =112.379, p=18
— exactly periodic in mean elements
— almost periodic: |z(T) — x(0)| ~ | X(T) — X(0)|=10"1
— periodicity improved by differential corr. @(10~13)
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Conclusions

e Useful algorithm for computing DRO
— low and higher order analytical solutions
— particular case of co-orbital motion
e Low order solution discloses the nature of the DRO problem
— provides orbit design parameters
x dimension of the reference ellipse
x minimum y distance to the primary
x Oorbital and libration periods
e Higher order improves accuracy for large librating orbits
e Planar Hill problem chosen as a demonstration model
— 3D case also feasible (in progress)

e Same techniques apply to the R3BP (in progress)
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