# A fast an efficient algorithm for the computation of distant retrograde orbits

Martin Lara

GRUCACI - University of La Rioja, Spain martin.lara@unirioja.es, mlara0@gmail.com

7th International Conference on Astrodynamics Tools and Techniques (ICATT)

DLR Oberpfaffenhofen, Germany, November 6 - 9, 2018

### **Background: Distant Retrograde Orbits**

- DRO: co-orbital motion relative to the heavier primary
  - same semi-major axis but slightly different eccentricity
  - orbit about lighter primary out of its sphere of influence
  - strong stability characteristics: quarantine orbits
  - science orbit for objects with very low mass
- DePhine proposal to ESA's Cosmic Vision Program (Oberst et al. 2017, EPSC2017–539)
- NASA's Asteroid Redirect Mission (Abell et al., Lunar & Planetary Sci. Conference, 2017)
- Numerical computation of (quasi) PO's of the RTBP
- Analytical sol.: rough approximations (qualitative dynamics)
  - improvements by perturbation methods

## Outline

- Recall basic facts of the Hill problem
  - useful to test feasibility of the perturbations approach
- Perturbation arrangement: distant retrograde orbits
  - perturbed linear dynamics
- Low order analytical solution
  - provides orbit design parameters
- Higher order analytical solution
  - Lindstedt series: captures the case of large librations
- Sample applications
- Conclusions

### The Hill problem



- CR3BP: primaries M, m < M, S/C of negligible mass
  - relative motion: rotating frame centered in the satellite
  - simplifications:  $m \ll M$ ,  $r \ll d$ , d planet-satellite distance
- Hamiltonian formulation  $\mathcal{H} = \mathcal{H}(X, x)$ 
  - conjugate momenta  $X = \dot{x} + \omega imes x$

#### **DRO:** Perturbation of the linear motion

•  $\mathcal{H} = \frac{1}{2}(X^2 + Y^2 + Z^2) - \omega(xY - yX) - \frac{\omega^2}{2}(3x^2 - r^2) - \frac{\mu}{r}$ 

- quadratic part (linear motion) integrable

- relative motion of two bodies orbiting the third one with Keplerian motion
- \* Clohessy-Wiltshire equations (J Aerospace Sci 1960)
- perturbation: Keplerian potential  $-\frac{\mu}{r}$  (or  $-\frac{1}{r}$  in Hill units)
- Perturbation: only if r is large enough in Hill units
  - Hill units  $r > 1 > 3^{-1/3} \approx 0.7$
  - motion out of Hill's sphere  $\Rightarrow$  *co-orbital motion*
- Trouble if r is not too large (close encounters)

- Focus on the planar case
  - unperturbed motion: drifting ellipse
- Change to epicyclic variables:

$$(x, y, X, Y) \longrightarrow (\phi, q, \Phi, Q; \omega)$$

- semi-axis a = 2b (y axis)

$$-b=\sqrt{2\frac{\Phi}{\omega}}$$

- eccentricity 
$$k = \sqrt{\frac{3}{4}}$$

–  $\phi:$  phase of the ellipse

(Benest, Celest Mech 13, 1976)

• Guiding center

 $-x_{\rm C} = Q/(k\omega)$  constant

- $-y_{C} = 2kq = 2k(q_{0} Qt)$  linear motion
- iicc such that  $Q = 0 \Rightarrow$  periodic motion



- Perturbed motion: drift may change to oscillatory motion
  - epicycle: S/C travels along a large ellipse
  - deferent: center of the epicycle moves on a small ellipse
- Approximate solution by perturbation methods

• 
$$\mathcal{H} = \mathcal{H}(\phi, q, \Phi, Q) = \omega \Phi - (1/2)Q^2 - \mu/r, \quad r \equiv r(\phi, q, \Phi, Q)$$

- $-\mu \rightarrow 0$  (or r very large) linear growing of  $\phi$  and q
- drifting ellipse in the y axis direction (Clohessy-Wiltshire)
- Remove short-period effects by averaging  $\phi$ :

 $(\phi, q, \Phi, Q) \xrightarrow{\mathcal{T}} (\phi', q', \Phi', Q'; \epsilon) / \mathcal{H} \circ \mathcal{T} = \mathcal{H}(-, q', \Phi', Q') + \mathcal{O}(\epsilon^n)$ 

- ${\mathcal T}$  depends on special functions
- Evolution equations (in *mean* elements) are integrable
  - low order of  $\epsilon$ : harmonic oscillator
  - improved solution: Duffing oscillator (elliptic functions)
  - high order of  $\epsilon$ : solution by Lindstedt series

#### Low order solution

- $\mathcal{K}' = \omega \Phi' \frac{1}{2} [Q'^2 + \Omega^2 q'^2] + \mathcal{P}(-, q', \Phi', Q') + \mathcal{O}(\epsilon^n)$ 
  - libration frequency  $\Omega \equiv \Omega(\Phi'; \mu, \omega)$
  - $\Phi^\prime$  constant, decoupled dynamics
- Neglect  $\mathcal{P}$ : On average
  - (q', Q'): harmonic motion of frequency  $\Omega$   $q' = q'_0 \cos \Omega t - (Q'_0/\Omega) \sin \Omega t$ ,  $Q' = Q'_0 \cos \Omega t + \Omega q'_0 \sin \Omega t$ ,
  - $\begin{array}{l} \phi' \text{ linear growth modulated with long-period oscillations} \\ * \text{ standard quadrature } \phi' = \phi'_0 + \tilde{\omega}t + \frac{\Omega}{\omega}[p(t) p(0)] \\ \tilde{\omega} = \omega[1 + (\Omega^2/\omega^2)d], \quad d \equiv d(q'_0, Q'_0, \Phi') > 0 \\ p = \frac{q'_0(Q'_0/\Omega)}{(b/k)^2} \cos 2\Omega t + \frac{q'_0{}^2 (Q'_0/\Omega)^2}{2(b/k)^2} \sin 2\Omega t, \\ * k = \sqrt{3/4} \text{ eccentricity of the epicycle} \end{array}$

• Deferent evolves with harmonic oscillations

$$x_C = \frac{\Omega}{k\omega} M \sin(\Omega t + \psi), \quad y_C = 2kM \cos(\Omega t + \psi),$$
$$-M = \sqrt{q'_0{}^2 + (Q'_0/\Omega)^2}, \quad \tan \psi = Q'_0/(\Omega q'_0)$$
$$-x_C = 0 \Rightarrow \max(y_C) = 2kM$$

- Orbit design parameters
  - -a = 2b: size of the epicycle
  - min. y distance to the origin for x = 0:  $d_y = a 2kM$
  - compute iicc of  $\max(y_C)$ :  $2k\sqrt{{q'_0}^2 + (Q'_0/\Omega)^2} = a d_y$
- Periodic orbit (on average): commensurability between
  - orbital period  $T_O = 2\pi/\tilde{\omega}$ ,
  - libration period  $T_L = 2\pi/\Omega$
- Osculating: improve periodicity by differential corrections

Low order solution very good for small librations
 – significance of short-period terms



- initial conditions (0.1, 20, -10.5, -0.1)

• Errors: epicyclic variables

Blue: mean elements. White: osculating elements



#### High order solution

- Low order: great insight / not so good for large librations
  - poor prediction of the amplitude and libration period
- Higher orders of the perturbation approach: Lindstedt series
  - change ind. variable  $\tau = nt$ , replace  $n = \sum_{i>0} \epsilon^i n_i$
  - replace  $q = \sum_{i \ge 0} \epsilon^i q_i(\tau)$ ,  $Q = \sum_{i \ge 0} \epsilon^i Q_i(\tau)$
  - chain of differential systems solved sequentially
- 5 series required:
  - time scale in which the Lindstedt series evolve (1 series)
  - time evolution of the guiding center q', Q' (2 series)
  - phase  $\phi'$ : linear growing + modulation (2 series)
    - \* linear freq.  $\tilde{\omega}$  with which the S/C evolves (1 series)
    - \* long-period modulation of the S/C's phase  $\phi'$  (1 series)
- Improved orbital and libration periods

 $\bullet$  Lindstedt series: arranged in the form of Fourier series in  $\Omega$ 

$$n = \sum_{m=0}^{2} \sum_{j=0}^{m} \sum_{k=0}^{m-j} \left(\frac{\Omega}{\omega}\right)^{2(m-j-k)} \left(\frac{Q'_{0}/\Omega}{b}\right)^{2j} \left(\frac{q'_{0}}{b}\right)^{2k} n_{m,j,k}$$

$$q' = \sum_{m=0}^{2} \sum_{i=0}^{m} \sum_{j=0}^{m} \sum_{k=0}^{m-j} \left(\frac{\Omega}{\omega}\right)^{2(m-j-k)} \left(\frac{Q'_{0}/\Omega}{b}\right)^{2j} \left(\frac{q'_{0}}{b}\right)^{2k} \times \left[c_{m,i,j,k}q'_{0}\cos(2i+1)\Omega\tau + s_{m,i,j,k}(Q'_{0}/\Omega)\sin(2i+1)\Omega\tau\right]$$

$$Q' = \sum_{m=0}^{2} \sum_{i=0}^{m} \sum_{j=0}^{m} \sum_{k=0}^{m-j} \left(\frac{\Omega}{\omega}\right)^{2(m-j-k)} \left(\frac{Q'_{0}/\Omega}{b}\right)^{2j} \left(\frac{q'_{0}}{b}\right)^{2k} \times \left[c_{m,i,j,k}Q'_{0}\cos(2i+1)\Omega\tau + s_{m,i,j,k}(q'_{0}\Omega)\sin(2i+1)\Omega\tau\right]$$

- Additional series for the phase  $\phi'$
- Quite effective evaluation

#### Sample orbit with large libration: (0, 10, -0.5, 1)



7-2



• Guiding center: (0, 10, -0.5, 1)

7-3

#### Close approach to the origin

• Periodic orbit of initial conditions (2.7163, 0, 0, -2.9724)



#### 1:1 resonant DRO $a = d_y$

• Design parameters  $a = 10 \Rightarrow \Phi' = 12.5$ ,

 $d_y = a \Rightarrow q_0' = Q_0' = 0,$   $T_O = 6.24852$ almost periodic:  $|x(T) - x(0)| \sim |X(T) - X(0)| = 10^{-3}$ 



• Periodicity improved by differential corr.  $\sim 10^{-13}$ 

9

#### Multiple resonant DRO: a = 10, $d_y = 5$

• Design parameters  $a = 10 \Rightarrow \Phi' = 12.5$ ,  $\Omega \approx \omega/20$ 

$$d_y = 5 \Rightarrow$$
,  $q'_0 = 0 Q'_0 = 0.141645$ ,

- but  $\rho \equiv T_L/T_O = 18.3 \dots$  non-periodic

• Find  $\Delta a$  such that  $\rho$  integer/rational, by iterations

$$- d_y$$
,  $q'_0 = 0$ , fixed

 $-\rho = T_L(Q'_0(\Phi'), \Phi') / T_O(Q'_0(\Phi'), \Phi') = \rho(\Phi')$ 

- Secant method a = 9.87661,  $T_L = 112.379$ ,  $\rho = 18$ 
  - exactly periodic in mean elements
  - almost periodic:  $|x(T) x(0)| \sim |X(T) X(0)| = 10^{-1}$
  - periodicity improved by differential corr.  $O(10^{-13})$



10-1

## Conclusions

- Useful algorithm for computing DRO
  - low and higher order analytical solutions
  - particular case of co-orbital motion
- Low order solution discloses the nature of the DRO problem
  - provides orbit design parameters
    - $\ast\,$  dimension of the reference ellipse
    - \* minimum y distance to the primary
    - \* orbital and libration periods
- Higher order improves accuracy for large librating orbits
- Planar Hill problem chosen as a demonstration model
  - 3D case also feasible (in progress)
- Same techniques apply to the R3BP (in progress)