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ABSTRACT

It is shown that the potential of the zonal problem of arti-
ficial satellite theory, up to an arbitrary degree, is more effi-
ciently formulated using Kaula linear perturbation theory than
other compact alternatives in the literature. Construction of
the evolution equations based on this formulation is clearly
more advantageous than the direct, brut force approach using
symbolic algebra systems, and is applied to the design of low
lunar orbits.

Index Terms— Gravitational potential, mean elements
equations, averaging, Kaula recursions, perturbation theory

1. INTRODUCTION

Preliminary design of artificial satellite missions commonly
relays on the use of simplified models that comprise the bulk
of the dynamics. For orbits about massive bodies, the ef-
fects of the non-centralities of the gravitational potential in
the orbital parameters are traditionally decomposed into sec-
ular and periodic terms, the later comprising both short- and
long-period oscillations. Because the amplitude of the long-
period oscillations is roughly one order of magnitude larger
than the short-period effects, dealing with just the few more
relevant zonal harmonics of the potential is generally suitable
for the initial steps of mission designing of artificial satellites.
In addition, the long-term evolution of the orbital parameters
is customarily investigated through averaging procedures that
remove the higher frequencies of the motion, in this way no-
tably speeding the computations.

Explicit expressions are customarily used when the dy-
namics can be represented by lower degree truncations of the
gravitational potential [1, 2, 3, 4, 5]. However, there are cases
in which the use of simplified models is not an option and full
zonal potential models must be used instead. The paradigm
is provided by the moon, where, due to the irregular character
of the moon gravity field, mission designing of low altitude
lunar orbits needs to deal with tens of, contrary to just a few,
zonal harmonics [6]. The analytical approach is still possible

∗Funded by Spanish State Research Agency and the European Regional
Development Fund: Project ESP2016-76585-R (MINECO/AEI/ERDF, EU).
† Funded by Project ESP2017-87271-P of the same Agencies.

[7, 8], but the requirement of handling formally huge expres-
sions usually discourages mission planners, who rather resort
to numerical procedures. Still, useful compact formulas for
dealing analytically with this problem exist in the literature
since many years ago [9], yet for practical application they
are commonly limited to the equations of the averaged flow,
which, besides, are particularized for the case of low eccen-
tricity orbits [10, 11, 12, 13].

Based on Kaula’s popular work [14], we re-derive the
long-term potential of the zonal problem in closed form and
show that Kaula’s approach in orbital elements provides much
more efficient formulas for the construction of the mean ele-
ments potential that recent alternative proposals in the litera-
ture [15, 16]. The necessity of having available efficient ex-
pressions for the long-term zonal potential, from which the
evolution equations of the orbit are directly derived, is illus-
trated with application to the design of low lunar orbits.

2. THE ZONAL POTENTIAL

The gravity potential is customarily given as a sum of trigono-
metric functions of the latitude and longitude whose coeffi-
cients involve zonal, sectorial and tesseral harmonics, as well
as inverse powers of the radius (see [17], for instance). How-
ever, except for particular resonances of the satellite’s mean
motion with the rotation rate of the attracting body, the ef-
fects of tesseral perturbations average out. In that case, the
zonal potential comprises the Keplerian term −µ/r and the
disturbing function

U = −µ
r

∑
n≥2

Rn⊕
rn

Cn,0Pn,0(sinϕ). (1)

where r, and ϕ stand for radius and geocentric latitude, re-
spectively; Pn,0 are Legendre polynomials, and Cn,0 = −Jn
are zonal harmonic coefficients. In addition to the harmonic
coefficients, the values of the gravitational parameter µ and
the equatorial radius of the central body R⊕ are what define a
gravitational model.

For orbital mechanics problems it is useful to write Eq. (1)
in orbital elements, viz. (a, e, I,Ω, ω,M) for semi-major
axis, eccentricity, inclination, right ascension of the ascend-
ing node, argument of the periapsis, and mean anomaly,



respectively. We recall that sinϕ = sin I sin θ, where the
argument of latitude is θ = f + ω, and the true anomaly f is
an implicit function of the mean anomaly M .

Following Kaula’s approach [14], we replace the radius
by

r = p/(1 + e cos f), (2)

in which p is the conic parameter, given by

p = aη2, (3)

and
η =

√
1− e2, (4)

is customarily known as the eccentricity function. Then,
Eq. (1) is written in the form1

U = −µ
a

(a
r

)2
η
∑
i≥2

Vi(a, e, I,−, ω,M), (5)

in which

Vi =
Ri⊕
ai

Ci,0
η2i−1

i∑
j=0

Fi,j(I)

i−1∑
k=0

(
i− 1

k

)
(6)

×ek coskf cos[(i− 2j)(f + ω)− πi],

where
πi = (i mod 2)

π

2
(7)

is the parity correction, and Fi,j notes Kaula’s inclination
functions particularized for the case of the zonal problem.
That is,

Fi,j =

min(j,bi/2c)∑
l=0

(−1)j−l−i0

22i−2l
(2i− 2l)!

l!(i− l)!(i− 2l)!
(8)

×
(
i− 2l

j − l

)
sini−2l I, i ≥ 2l.

where bi/2c denotes an integer division. Remarkably, the in-
clination functions can be evaluated by means of recursion
formulas [18, 19].

To abbreviate notation in what follows we replace s ≡
sin I , c ≡ cos I , and adhere to the index notation in [20],
namely

i? = i mod 2, ij = b(i− j)/2c, i?j = ij + i?. (9)

3. LONG-TERM EFFECTS IN MEAN ELEMENTS

Contrary to ephemeris computation, which must be supplied
in osculating elements, the orbit evolution is customarily stud-
ied in mean elements. That is, a transformation of variables
(a, e, I,Ω, ω,M)

T−→ (a′, e′, I ′,Ω′, ω′,M ′; ε), in which ε�
1The reasons for keeping the factor (a/r)2η out of the summation will

be apparent later.

1 notes the small parameter of the transformation, and the
prime variables denote mean elements, is carried out such
that the short-period variations, in the new variables, are re-
moved from Eq. (5) up to some truncation order m of the
Taylor series expansion. Thus, neglecting terms of O(εm+1)
and higher, it is obtained

U ◦ T =

m∑
i=1

εi

i!
Ui(a

′, e′, I ′,−, ω′−). (10)

For conservative problems, like the current case, the
transformation T is derived from a generating function
W =

∑
i≥0(εi/i!)Wi+1, whose computation is the non-

trivial subject of perturbation theory (see [21], for instance).
However, up to the first order of ε, the mean/osculating trans-
formation is easily computed as follows.

First, U1 is chosen as the average of the disturbing func-
tion U over the mean anomaly,

U1 = 〈U〉M =
1

2π

∫ 2π

0

U dM, (11)

Next, W1 is computed as

W1 =
1

n

∫
(U − U1) dM, (12)

where n =
√
µ/a3 is the mean motion. Then, up to the first

order of ε, the transformation is given by the corrections [2]

a− a′ = − 2

an

∂W1

∂M

e− e′ =
η

ea2n

(
∂W1

∂ω
− η ∂W1

∂M

)
I − I ′ = − c

a2nsη

∂W1

∂ω

Ω− Ω′ = − 1

a2nsη

∂W1

∂I

ω − ω′ =
1

a2nη

(
c

s

∂W1

∂I
− η2

e

∂W1

∂e

)
M −M ′ =

1

a2n

(
2a
∂W1

∂a
+
η2

e

∂W1

∂e

)
where ∂W1/∂M = (a/r)2η ∂W1/∂f and, after evaluation,
the right members are written in prime variables when mov-
ing from mean to osculating elements (direct transformation),
and in osculating (non primed) variables when moving from
osculating to mean elements (inverse transformation). This
transformation is affected of singularities due to the set of
elements chosen, but it can be easily reformulated in non-
singular elements when required [22, 23].

To avoid expansions of the elliptic motion when solving
the quadratures in Eqs. (11) and (12), the differential relation



dM = r2/(a2η) df is customarily used.2 Then, replacing
Eq. (5) into Eq. (11),

U1 = −µ
a

∑
i≥2

〈Vi〉f . (13)

Terms 〈Vi〉f are more easily computed by expanding
Eq. (6) as a Fourier series in f . This is done by rearranging
terms coskf cos[m(f + ω) − πi], with m = (i − 2j), in
Eq. (6). First, cos[m(f + ω)− πi] is written

cos[m(f + ω)− πi] = cosmf cos(mω − πi) (14)
− sinmf sin(mω − πi).

Then, using the standard trigonometric reductions

cosβ cosk α =
cos(α+ β) + cos(α− β)

2
cosk−1 α,

sinβ cosk α =
sin(α+ β)− sin(α− β)

2
cosk−1 α,

(15)
one easily arrives to

coskf

{
cos(i− 2j)f
sin(i− 2j)f

}
=

1

2k

k∑
l=0

(
k

k − l

)
(16)

×
{

cos(i− 2j − k + 2l)f
sin(i− 2j − k + 2l)f

}
,

which shows that the only terms of Eq. (6) that are free from f
come from those terms of Eq. (16) such that l = 1

2 [k−(i−2j)]
or, equivalently, k − l = 1

2 (k + i)− j. Hence,

〈Vi〉f = η
Ri⊕
ai
Ci,0

i∑
j=0

Fi,j(s)Gi,j(e) cos[(i− 2j)ω − πi],

(17)
where

Gi,j =
1

(1− e2)i

i−1∑
k=0

(
i− 1

k

)
ek

1

2k

(
k

k+i
2 − j

)
. (18)

As expected, except for the factor η that we left out of the
summation in Eq. (17), the functions Gi,j in Eq. (18) are no
more than Kaula eccentricity functions for the particular case
of the zonal problem. Indeed, because the summation index l
in Eq. (16) is integer, k + i must be even in Eq. (18), which,
therefore, can be rearranged in the efficient form proposed by
Kaula

Gi,j =
1

(1− e2)i

̃−1∑
l=0

(
i− 1

q

)(
q

l

)
eq

2q
, (19)

where q = 2l + i − 2̃, and either ̃ = j when i ≥ 2j, or
̃ = i− j when i < 2j, cf. Eq. 3.66 of [14].

2This fact gives sense to the factor out of the summation in Eq. (5).

4. PERFORMANCE COMPARISONS

More than 40 years later than the seminal work of Kaula,
alternative expressions have being provided from the point
of view of Hamiltonian perturbation theory [15]. However,
while both sets of formulas must be obviously equivalent
when expanded, we show here that Kaula’s arrangement of
the summations notably eases the construction of the aver-
aged potential when the number of zonal harmonics consid-
ered goes beyond the first few terms.

Indeed, as shown in Fig. 1, the time spent in the explicit
construction of the averaged potential up to a given degree n
is roughly the same either with Kaula’s or Saedeleer’s expres-
sions for the lower degrees of the zonal potential. However,
when the degree starts to grow, we find that the time spent
when using Saedeleer’s expressions clearly increases over the
time needed when using Kaula’s expressions, at an almost
constant rate that is approximately proportional to 1 tenth of
the zonal harmonic degree n. Thus, in Saedeleer’s approach,
the time spent in constructing the zonal term of 20th degree
is ∼ 3 times longer than the time needed when using Kaula’s
formulas, ∼ 5.5 times longer for the zonal term of 40th de-
gree, ∼ 9 times longer for the zonal term of 60th degree, or
∼ 11 times longer for the zonal term of 80th degree.
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Fig. 1. Performance of Kaula expressions in the construction
of the mean elements potential relative to analogous expres-
sions in [15].

The computations have been carried out with Wolfram
Mathematica 9 running under macOS High Sierra, version
10.13.6, with a 2.8 GHz Intel Core i7 processor and 16 GB
of RAM. Absolute times using each approach are depicted in
Fig. 2. We checked that while the computing time grows with
the degree in a cubic rate when using Saedeleer’s approach,
it just grows only slightly higher than quadratic when using
Kaula’s recursions.
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Fig. 2. Time spent in the computation of each term of the
mean elements zonal potential with the different algorithms.

5. DESIGN OF LOW LUNAR ORBITS

Because of the lumpy character of the moon’s gravity field,
the use of full zonal potential models is mandatory even in
the preliminary steps of mission designing of low lunar orbits.
In particular, the choice of lower degree zonal potentials not
only provides unacceptable results from a quantitative point
of view, but it my provide also wrong qualitative results, as it
has been pointed out in [24]. Exploring the sensitivity of the
orbit design problem with respect to the truncation degree of
the zonal potential is definitely facilitated using general ex-
pressions as those of Kaula in Eq. (13), cf. [20].

In this section we illustrate the utility of having analyti-
cal expressions of the form of Eq. (13), which is valid for an
arbitrary degree, to explore the dynamics of low lunar orbits.

First of all, we note that the satellite motion under the
only action of the zonal potential is a conservative problem.
Therefore, it accepts the energy integral E = T + V , where
T is the kinetic energy and V = −µ/r + U is the potential
energy. Hence,

E = − µ

2a
− µ

a

(a
r

)2
η
∑
i≥2

Vi(a, e, I,−, ω,M) (20)

as follows from Eq. (5). Besides, the problem enjoys axial
symmetry, which is the reason why the right ascension of the
ascending node Ω is missing in the potential. In consequence,
in addition to the energy, the zonal problem admits the polar
component of the angular momentum

H =
√
µa(1− e2) cos I, (21)

as integral. The effect of this integral is to decouple the varia-
tion of the node from the other variation equations, in which,
besides, the variation of I = I(e, a;H) does not need to be
integrated, thus making the zonal problem of just 2 degrees of
freedom.

On the other hand, the zonal problem is also conservative
in mean elements, so it also admits the energy integral

E′ = − µ

2a′
− µ

a′

∑
i≥2

〈Vi〉f (a′, e′, I ′,−, ω′,−), (22)

as well as
H ′ =

√
µa′(1− e′2) cos I ′. (23)

But now, because of the averaging process, the mean mean
anomaly M ′ is absent in the right member of the equations of
motion. This fact converts the mean semi-major axis a′ into
an integral of the mean elements motion. The effect of this
new integral is to decouple the mean anomaly evolution form
the variation of the other elements. In consequence, solving
the zonal problem in mean elements is reduced to the integra-
tion of the variation equations of e′ and ω′. That is, a con-
servative one degree of freedom problem, which, therefore
makes the zonal problem in mean elements integrable.

Instead of trying to compute the analytical solution, the
integral H ′ can be used to rearrange the terms given by
Eq. (17) of the mean elements potential in Eq. (13), in
the form 〈Vi〉f ≡ 〈Vi〉f (a′, e′, I ′(e′; a′, H ′), ω′). Hence,
Eq. (13) is written as

U1 = − µ
a′

∑
i≥2

〈Vi〉f (e′, ω′; a′, H ′) = E′ +
µ

a′
= constant.

Therefore, the flow in mean elements can be represented by
contour plots of the constant, mean elements potential, in the
parameters plane (a′, H ′).

Alternatively, instead of using H ′ it is customary to use
the inclination of the circular orbits σ = σ(a′, H ′) as one of
the parameters because it provides a higher insight into the
mean elements problem. Indeed, e′ = 0 for circular orbits,
and hence

σ = cos I ′circular = H ′/
√
µa′ = constant.

Therefore, we explore the dynamics of the mean elements
zonal problem by fixing a′ and cos I ′circular, and plotting dif-
ferent contours U1 = constant for different pairs of initial
conditions e′ = e′0, ω′ = ω′0. The representation of the mean
elements flow in this way for different truncations of the zonal
potential will reveal the number of zonal harmonics required
in the preliminary design of low lunar orbits [20].

A sample illustration of this procedure is presented in
Fig. 3, where, in order to focus on non-impact, low alti-
tude orbits that are typical for science missions, the different
contour plots are depicted in the (e′ cosω′, e′ sinω′) repre-
sentation. The parameters of a low altitude high inclination
lunar orbit that remains, on average, 125 km over the surface
of the moon, and with an inclination of 88 deg. for a circular
orbit have been selected. The dotted circle in the plots of
Fig. 3 marks the eccentricity limit for impact orbits, whereas
the dashed contour corresponds to the energy manifold of
circular orbits.



We see that predictions for a C2,0–C7,0 truncation of the
lunar potential (top plot of Fig. 3), show that the manifold of
circular orbits soon or later lead the orbiter to impact the sur-
face of the moon. Still, surrounded by this manifold, there
exists an orbit with constant eccentricity, on average, that
remains with frozen argument of the periapsis, on average,
ω′ = π/2. However, when the truncation of the mean zonal
potential is extended to include up to C9,0 (second plot of
Fig. 3), the eccentricity of the circular orbit no longer grows
enough to yield impact. Quite on the contrary, the energy
manifold of the circular orbit surrounds quite closely a frozen
orbit with very low eccentricity that, in this case, has the argu-
ment of the periapsis in the opposite direction of the previous
case: ω′ = −π/2.

The evolution of these types of orbits keeps changing for
truncations of the potential to increasing degrees, and when
C2,0–C30,0 are taken into account (third plot of Fig. 3), the
eccentricity of all the orbits of interest will end increasing to
the limit of impact. Subsequent computations for increasing
number of zonal harmonics show that the dynamics seems to
stabilize for the C2,0–C33,0 truncation (bottom plot of Fig. 3),
and it has been checked that including higher order harmonics
in the mean elements equations only contribute small quanti-
tative variations for an orbit of these characteristics.

6. CONCLUSIONS

The effect of long-term disturbances produced by the non-
centralities of the gravitational potential on an artificial satel-
lite of the moon can be efficiently scrutinized up to an ar-
bitrary degree using Kaula equations particularized for the
zonal problem in mean elemnts. On the other hand, the com-
mon case of orbits about earth-like bodies is sensitive to sec-
ond order effects of the zonal harmonic of the second degree.
In that case, Kaula’s compact summations must be comple-
mented with the explicit expressions of these second order
effects. This work is in progress and results will be reported
elsewhere.
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