First tests of the C/C++ version of the Draper Semi-analytical Satellite Theory (DSST)

Paul J. Cefola, Juan F. San-Juan, Rosario López, Paula Ezquerro, Iván Pérez and Srinivas Setty

Scientific Computing Group (**GRUCACI**) University of La Rioja

7th International Conference on Astrodynamics Tools and Techniques (ICATT) 6 -9 November 2018, DLR Oberpfaffenhofen, Germany

P. J. Cefola, J. F. San-Juan, R. López, et al. DSST C

- Draper Semi-Analytical Satellite Theory (DSST)
- Basic concepts of DSST Standalone
- OSST C/C++ Project
- Ourrent status of this project
- Integration test

イロト イポト イヨト イヨト

∃ <2 <</p>

Draper Semi-Analytical Satellite Theory (DSST)

- DSST was created to be a low cost, long-term orbit propagator for the following applications:
 - Mission feasibility studies
 - Mission analysis (lifetime and geometry constraints)
 - Tracking station acquisition schedules
 - Dynamic modeling required for differential correction procedures

ヘロン 人間 とくほ とくほ とう

3

- DSST ⊂ Goddard Trajectory Determination System (R&D GTDS)
- DSST Standalone

Draper Semi-Analytical Satellite Theory (DSST)

GTDS/DSST version histoy

ъ

P. J. Cefola, J. F. San-Juan, R. López, et al.

Equinoctial elements

$$a = a$$

$$h = e \sin(\omega + I\Omega)$$

$$k = e \cos(\omega + I\Omega)$$

$$p = \tan^{l} \left(\frac{i}{2}\right) \sin \Omega$$

$$q = \tan^{l} \left(\frac{i}{2}\right) \cos \Omega$$

$$\lambda = \ell + \omega + I\Omega$$

(Nonsingular elements)

Equinoctial reference frame

イロン イボン イヨン イヨン

э

Expansion of the Geopotential in Equinoctial Elements

- Expression in spherical harmonics relative to the ECI frame
 - radial distance, latitude, and longitude
- Rotation of the spherical harmonics to the equinoctial orbital frame
 - Jacobi polynomials replace the Kaula inclination functions
 - stable recursion formulas are available in the mathematical literature
- Products of radius to a power times sin or cos of true longitude (and multiples) are expanded as a Fourier series in the mean longitude
 - Modified Hansen coefficients replace the Kaula eccentricity functions
 - stable recursion formulas due to Hansen (1855) were rediscovered around 1978 in the astronomical literature
 - Jozef Van Der Ha translated the Hansen manuscript from German to English (1978)

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

DSST Standalone: Mean element dynamics

Averaged VOP equations:

$$\frac{d\bar{a}_{i}}{dt} = \sum_{\substack{j=0\\(1\leq j+k)}}^{N} \sum_{k=0}^{M(j)} \epsilon^{j} \nu^{k} B_{i,j,k} + \mathcal{O}(\epsilon^{N+1}) \quad (i = 1...5)$$

$$\frac{d\bar{l}}{dt} = n(\bar{a}_{1}) + \sum_{\substack{j=0\\(1\leq j+k)}}^{N} \sum_{k=0}^{M(j)} \epsilon^{j} \nu^{k} B_{6,j,k} + \mathcal{O}(\epsilon^{N+1})$$

Force model:

- Recursive zonals and J_2^2 (Folcik, 2012) in closed form
- Recursive tesseral resonance $(e^n, n > 20)$ up to 50×50 geopotential
- Recursive Solar-Lunar single averaged (Time Independent, closed form) and double average
- Solid Earth tide in closed form
- Atmospheric drag and J₂-drag coupling terms via numerical quadrature
- Solar radiation pressure via numerical quadrature

DSST Standalone: Mean to osculating

Short-periodic functions:

$$a_{i} = \bar{a}_{i} + \sum_{\substack{j=0\\(1 \le j+k)}}^{N} \sum_{k=0}^{M(j)} \epsilon^{j} \nu^{k} \psi_{i,j,k} + \mathcal{O}(\epsilon^{N+1})$$

$$l = \bar{l} + \sum_{\substack{j=0 \\ (1 \le j+k)}}^{N} \sum_{k=0}^{M(j)} \epsilon^{j} \nu^{k} \psi_{6,j,k} + \mathcal{O}(\epsilon^{N+1})$$

Force model:

- Recursive zonals and J₂² (Folcik, 2012) in closed form
- Recursive tesseral m-dailes and J₂ secular/tesseral m-daily coupling in closed form. Recursive tesseral linear combinations (eⁿ, n > 20)

三) (

- Recursive Solar-Lunar in closed form
- Atmospheric drag numerical computation
- Solar radiation pressure numerical computation

DSST Standalone: Physical model data

- epotfld contains the Earth geopotential coefficients
- timecoef includes (A.1-UTC) and (A.1-UT1) time difference coefficients, as well as polar motion coefficients, and supports the SLP files
- slp1950 is the solar-lunar-planetary (SLP) ephemeris file for Mean of 1950.0 coordinates. This file also supports the SLP ephemeris file for J2000 coordinates
- slptod is the solar-lunar-planetary (SLP) ephemeris file for tod coordinate system (compatible with Mean of 1950.0 coordinates). slptod also supports the SLP ephemeris file for tod compatible with J2000 coordinates
- jacdat supports the Jacchia-Roberts atmospheric density model
- newcomb is the file of the modified Newcomb operators, which supports the tesseral resonance and tesseral linear combination short-periodic terms

Testing, Reporting, and Maintenance Program (TRAMP) was developed to maintain the physical model data files (Folcik, 2017)

DSST C Project

The work that we are currently carrying out is based on maintaining the architecture of the Fortran 77 version of DSST as much as possible, and thus avoiding rewriting the C/C_{++} version from scratch. One of the main consequences of this choice implies that the new code is functionally equivalent to the original legacy code, thereby facilitating the use of existing test resources

The original Fortran 77 DSST version is a well-tested and validated tool

- ⊒ →

Current status of this project

- DSST Standalone is a collection of about
 - 50 include modules
 - 283 modular Fortran subroutines
 - approximately 25000 lines of code
 - more than 50000 lines of documentation
- Major problems:
 - DSST Standalone uses GO-TO statements which usually leads to very complex programs, difficult to understand and maintain, and may be the cause of serious bugs (93/283). Ambiguity handling Fortran arrays
 - A serious difficulty arises from the fact that the Fortran physical model data files are divided into records and stored in Fortran binary format

ヘロト 人間 ト ヘヨト ヘヨト

æ

Incremental development model

- Fortran 77 code is being translated to C/C++ maintaining the GO-TO statements and the original code as much as possible
 - 50 include modules ✓
 - 283 modular Fortran subroutines (240 files have been migrated and in progress the rest)✓
 - Doxygen documentation ✓

Validation and verification from the original code: Unit test and integration test \checkmark

Once the C/C++ version has passed all the test, the C/C++ code will be refactored for conformance with C/C++ style in successive iterations, thereby proceeding to convert old Fortran-style structures into new code that also passes the tests

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Extend the facilities of DSST Standalone

Low Earth Orbit (LEO)

	Mean elements
Enoch	2014 January 01 0 brs 0min 0.0 sec
Semi-major axis	6887.30414km
Eccentricity	0.00113949
Inclination	87 deg
RAAN	82.6658693 deg
Argument of the perigee	132.3453611 deg
Mean anomaly	286.4508005deg

DSST C/C++ parametrization

- Force Models
 - Recursive zonals up to 50×50 geopotential and J_2^2 in closed form

イロト イポト イヨト イヨト

3

- Recursive Solar-Lunar single averaged
- Solid Earth tide in closed form
- Atmospheric drag and J₂-drag and Iszak J₂ effect
- Short-period terms
- Propagation: 1 year

Semimajor axis

Eccentricity

Inclination

Right ascension of the node

Argument of the perigee

Mean anomaly

Future works

- The development of a parallel DSST orbit propagator based on the Picard-Chebyshev concept using multicore and GPU technologies
- Normalized gravity-model coefficients, ideally for high degree and order fields

ヘロト ヘアト ヘビト ヘビト

3

Different atmospheric density models