A technique for designing Earth-Mars low-thrust transfers culminating in ballistic capture

G. Aguiar

F. Topputo

Delft University of Technology Astrodynamics & Space Missions <u>goncalocruzaguiar@gmail.com</u> Politecnico di Milano Aerospace Science and Technology <u>francesco.topputo@polimi.it</u>

Outline

- 1. Introduction
- 2. Concept
- 3. Assumptions
- 4. Ballistic capture
- 5. Low-thrust targeting

- 6. Results
- 7. Conclusions

Introduction

Retrieved from <u>http://www.busek.com/</u> index_htm_files/70008517E.pdf (visited on 21/11/2017)

Retrieved from <u>http://www.busek.com/</u> index_htm_files/70010819D.pdf (visited on 21/11/2017)

What are the characteristics of Earth–Mars transfers that combine ballistic capture with low-thrust propulsion?

Concept

Assumptions

(Casado, 2017)

r _d	$ec{artheta}_{d}$
r _e + R _{soi,e}	$ec{v}_{E}$

A (m ²)	m _{wet} (kg)	CR
0.52	26	1.1

Introduction Concept

Assumptions

Ballistic

Low-thrust

Results

Conclusions

TUDelft

2B		TB	SRP	NSG
Mars	Sun	Mercury – Neptune	Cannonball	20x20
	_			_
Required for		May facilitate	Improves validity of	
capture		capture	results	

$$t_0 = t_{01} + 150 \text{ days}$$

 $T_M = 687 \text{ days}$

$$t_0 = t_{01} + 600 \text{ days}$$
$$T_M = 687 \text{ days}$$

POLITECNICO

MILANO 1863

ŤUDelft

Low-thrust targeting

elft

Concept

Assumptions

Ballistic

Low-thrust

Results

Conclusions

Rendezvous with Mars

(no capture)

Concept

Assumptions

Ballistic

Low-thrust

Results

Conclusions

Rendezvous with Mars

(no capture)

Concept

Assumptions

Ballistic

Low-thrust

Results

Conclusions

Results

(with ballistic capture)

- Introduction
- Concept
- Assumptions
- Ballistic
- Low-thrust
- Results
- Conclusions

Conclusions

- The spacecraft requires roughly the same fuel regardless of Earth departure or Mars arrival dates;
- Ballistic capture does not carry additional costs, when compared to simply rendezvousing with the planet;
- 5 kg of propellant are required to reach Mars and get ballistically captured (20% of the spacecraft's mass at departure);
- The spacecraft needs to fly for at least 3.6 years.

Thank you for your attention. Questions?

G. Aguiar

F. Topputo

Delft University of Technology Astrodynamics & Space Missions <u>goncalocruzaguiar@gmail.com</u> Politecnico di Milano Aerospace Science and Technology <u>francesco.topputo@polimi.it</u>

References

Images

- Casado, Á. S. (2017). Preliminary Systems Design of a Stand-Alone Interplanetary CubeSat to Mars (Unpublished master's thesis). Universidad Carlos III de Madrid, Politecnico di Milano.
- Luo, Z.-F., Topputo, F., Bernelli-Zazzera, F., & Tang, G. J. (2014). Constructing ballistic capture orbits in the real Solar System model. Celestial Mechanics and Dynamical Astronomy, 120(4), 433–450. doi: 10.1007/s10569-014-9580-5

A technique for designing Earth-Mars low-thrust transfers culminating in ballistic capture

Backup slides

ŤUDelft

MILANO 1863

ŤUDelft

Introduction Concept Assumptions Ballistic Low-thrust Results

Conclusions

Ballistic capture

25

Concept

Assumptions

Ballistic

Low-thrust

Results

Conclusions

Rendezvous with Mars

(no capture)

Introduction Concept

Assumptions

Ballistic

Low-thrust

Results

Conclusions

Results

(with ballistic capture)

Introduction Concept

Assumptions

Ballistic

Low-thrust

Results

Conclusions

Results

(with ballistic capture)

