

Software Tool for the Design and Computation of Mission End-of-Life Disposal

HTTP://REDSHIFT-H2020.EU/

- Tool Overview
- Tool Modules
 - Disposal Mapping
 - Design for Demise
 - Flux and Collision Probability

Comprehensive SW tool implementing the holistic vision of the project.

Tool for spacecraft manufacturers and operators, space agencies and research institution to design the EoL of any Earth-based mission and to study the interaction with the space debris environment.

It is the aim of the ReDSHIFT tool to contribute in a proactive way to the mitigation of space debris problem via passive EoL mitigation.

Two different user interfaces

- Desktop, based on ESA openSF, distributed within the consortium partners, highly configurable for easy upgrades
- Web, users' access control, public access to S/C operators, space agencies and research institution

ReDSHIFT SW Tool Desktop

avigation 🕒 🕀 🙈 😂 🖓 🗖	Editor/Control Executions		B
epository Executions File system	D4D DM X		
	Session progress		Session Time: 0h:0m:1s
Repository Descriptors D4Dipput	Module progress		Module Time: 0h:0m:1s:77
D4Doutput DMinput	Log Messages		
DMoutput	Date and time	Туре	Message
• Modules	2018-01-11 02:53:59:194		
▶ DM	2018-01-11 02:53:59:194	System	Session finished
▶ D4D	2018-01-11 02:53:58:766	System	Module time :: 567ms
▼ Simulations	2018-01-11 02:53:58:766	System	Module execution was successful
D4D	2018-01-11 02:53:58:745	Info	Finishing model execution
DM	2018-01-11 02:53:58:704	Warning	Log message cannot be parsed: Invalid numb
▼ Sessions	2018-01-11 02:53:58:703	Info	Parameter (w, Argument of Pericenter, DOUE
D4D	2018-01-11 02:53:58:703	Info	Complete name : orbit.w
DM	2018-01-11 02:53:58:702	Info	Parameter (sma, Semi-major axis, DOUBLE, 7
	2018-01-11 02:53:58:702	Info	Complete name : orbit.sma
	2018-01-11 02:53:58:702	Info	Parameter (inc, Inclination, DOUBLE, 56, deg
	2018-01-11 02:53:58:702	Info	Complete name : orbit.inc
	2018-01-11 02:53:58:702	Info	Parameter (ec, Eccentricity, DOUBLE, 0.01, , 0
	2018-01-11 02:53:58:702	Info	Complete name : orbit.ec
	2018-01-11 02:53:58:702	Info	Parameter (RAAN, Right Ascension of the As
	2018-01-11 02:53:58:695	Info	Complete name : orbit.RAAN
	2018-01-11 02:53:58:695	Info	Parameter (dv, Maximum DV on board, DOU
	2018-01-11 02:53:58:695	Info	Complete name : disposal.dv
	Show non-formatted messages		
		Cancel Abort	Resume

ReDSHIFT SW Tool Web

ResSHIFT						4	4 2		
F. Letterio Online	Launch computation pr	rocess							
# Home	Disposal mapping configuration								
■Processes	Orbit								
Caunch Process	Regime								
O Help	GTO Somi mayor avie	Results							
	km sma								
	Eccentricity	DM Output	t						
	ec	D4D LEC) out						
	Inclination								
	deg inc	#	Scen	Mass	Area	SMA	Eccen	Incl	
	Right ascension of the ascending node		air	500.0	6.0	20787.31850	0.68740	7.00000	
	Argument of perison tor	Plat							
	deg deg	Plot							
	Disposal				9	500	0.18		
					9		- 0.16		
	Design for Demise configuration						0.14		
	Componente				8	500	0.1		
	Components				a (kr	000	un 10.0		
							0.06		
	Launch process				7	500 targer cor	ndit. 0.04		
	Name name				7	000	0.02		
	Submit					35 40 45 50 55 60 65 70 75 8	0 85		
						i (deg)			
		Los outo	ut.						
		cog outp							
		Sail to Info	o big actual pericenter = 651.31	1 km					Î
		Info Info	 						-
		Dow	nload						
		D4D Outp	ut						

deimos elecnor group

The module aims at assessing the best EoL disposal strategy for a given orbital configuration.

The results are based on the extensive dynamical mapping performed on the circumterrestrial space from LEO to GEO, highlighing the main dynamical perturbations to be exploited.

The SW provides the ΔV budget required to reach a deorbiting corridor which can facilitate a re-entry.

A hybrid approach maneuver + sail can be envisaged.

In case a reentry is not feasible, the most stable and/or less expensive graveyard orbit is selected.

Specific plots to visualize the outcome are generated.

Disposal Mapping Overview

Parameter	Description
sma	Semi-major axis
ec	Eccentricity
inc	Inclination
RAAN	Right Ascension of the Ascending Node
w	Argument of Pericenter
dv	Maximum DV on board
SAIL	Solar sail presence
tor	Re-entry time: 10 or 25 years
epoch	Epoch: 1 → 22.74/12/2018, 2 → 21.28/06/2020
mass	Satellite mass

9500 Research of resonant a, e, i conditions that can be targeted 8500 to take advantage of other a (km) 8000 perturbations

init. convit. 7500 arget condit. 7000 35 50 55 65 40 45 60 i (deg)

i (deg)

init. condit.

0,18

0,16

0.14

0.08

0,06

0.04

0,02

0.12 g

delta i 0.1

Given initial conditions, re-entry is assessed considering drag with or

9500

9000

8500

7500

7000

75

70

35

40 45 50 55 60 65 70 75 80 85

(km) ·® 8000

without sail (user input)

Commission

If the ΔV provided by the user is lower than the one required to target any of the reentry solutions, then a propagation is performed and the corresponding ephemerides are computed

are

elecnor group

Graveyard design example

Re-entry design example

$$a = R_{GEO}, \ e = 0.001, \ i = 0^{\circ}, \ \Omega = 0^{\circ}, \ \omega = 0^{\circ}$$

$$a = R_{GEO}, \ e = 0.001, \ i = 70^{\circ}, \ \Omega = 0^{\circ}, \ \omega = 0^{\circ}$$

deimos elecnor group

Given a desired deorbiting time find the required area-to-mass ratio times C_R for passive sail approach

Zero-finding method used on a model that considers drag + $SRP + J_2$

If the passive approach is unfeasible: given the desired deorbiting time find the required area-to-mass ratio times C_R for a sail that modulates its attitude approx. once every six months

Sample of output:

Conditions at 120 km:

a = 6490.4993189786 km, e = 0.0000073637, i = 0.2617878165 rad Om = -1142.6490131839 rad, om = 2049.2036034114 rad

deim

If either passive and/or modulating sail approach is possible: check feasibility according to technological boundaries. Given $m_{s/c}$ mass of the s/c and $S = Ac_R / m$ provided by the module. $m_{s/c} \triangleright L(m_{s/c})$ Side length of the sail

Sample of output: Feasible sail design Area of the sail: 0.46477 m² Mass of the sail: 0.62861 kg Area-to-mass ratio: 0.00831 m²/kg Percentage membrane: 0.04000 (%) Percentage boom: : 0.88000 (%) Percentage empty: 0.08000 (%)

Rationale

- Provide a quick, initial assessment of vehicle demise and on-ground casualty areas
- Enable the holistic investigation of novel disposal techniques within the ReDSHIFT framework
- Identify components likely to pose a casualty risk and provide focus design-for-demise effort
- Simplified two-stage, database driven approach suitable for evaluating large numbers of scenarios in a web context

Inputs

- Spacecraft model mass, tumble average projected area, catalogue of key components
- Component model instance count, mass, reference length, aspect, primary material
- Orbit at entry semi-major axis, eccentricity, inclination

Parameter	Description
name	Component name
count	Number of component instances on the vehicle
mass	Component mass
length	Component length
aspect	Component aspect
material	Primary material (ALUMINIUM, STEEL, TITANIUM, COPPER)

Algorithms

Interpolated, database driven, two stage analysis

Stage 1 - Parent vehicle re-entry to fragmentation

- Database derived from position independent, 3dof propagation to fragmentation of parent vehicle
- Break-up criterion thermo-mechanical in nature, product of dynamic pressure and heat load equivalent to that experienced by circular entry at 78km
- Output vehicle altitude, speed, flight path angle at fragmentation
- Stage 2 Fragmentation to component demise or landfall
 - Database derived from 3dof propagation to demise or impact
 - Solid, cylindrical components with characteristic length and aspect
 - SAM aerothermal heating models used
 - Early / expected / late release assessment (+/-20% expected release altitude)
 - Output expected demise altitude, landed mass and area, qualitative demise expectation (demise / survive / uncertain)

D4D Assessment

Output

European Commission

Scenario	Object	Count	Material	Outcome	FragMass	FragArea	TotMass	TotalArea	HighOutcome	NomOutcome	LowOutcome
scen1	TCU	1	ALUMINIUM	Uncertain	7.74	0.68	7.74	0.68	Uncertain	Uncertain	Survive
scen1	BCDR	1	ALUMINIUM	Uncertain	2.59	0.54	2.59	0.54	Uncertain	Uncertain	Uncertain
scen1	PDU	1	ALUMINIUM	Uncertain	1.25	0.48	1.25	0.48	Uncertain	Uncertain	Survive
scen1	RWL	1	STEEL	Survive	5.04	0.65	5.04	0.65	Survive	Survive	Survive
scen1	TANK	2	TITANIUM	Survive	5.5	1.18	11	2.37	Survive	Survive	Survive
scen1	THRST	6	STEEL	Uncertain	0.03	0.38	0.2	2.31	Uncertain	Uncertain	Uncertain
scen1	PL1	1	ALUMINIUM	Uncertain	16.37	0.89	16.37	0.89	Uncertain	Survive	Survive
scen1	PL3C	4	ALUMINIUM	Demise	0	0	0	0	Demise	Demise	Uncertain
scen1	TOTAL	17					44.19	7.92			

deimos elecnor group

Generated by LUCA2
flux on 210207663
<pre># year total_flux flux >1mm flux >1cm flux>10cm coll_prob </pre>
#_[-][1/m^2/a][1/m^2/a][1/m^2/a][1/m^2/a][]
2020 0.1903E-01 0.1903E-01 0.4062E-04 0.2900E-05 0.1926E-04
2021 0.1794E-01 0.1794E-01 0.3828E-04 0.2733E-05 0.1835E-04
2022 0.1825E-01 0.1825E-01 0.3895E-04 0.2782E-05 0.1932E-04
2023 0.1986E-01 0.1986E-01 0.4239E-04 0.3027E-05 0.2168E-04
2024 0.2096E-01 0.2096E-01 0.4472E-04 0.3194E-05 0.2350E-04
2025 0.1928E-01 0.1928E-01 0.4114E-04 0.2938E-05 0.1969E-04

Parameter	Description
scensel	Scenario Selection
simbegin	Simulation begin
simduration	Simulation duration
data	Path to database annual results
nghost	Number of ghost objects
id ¹	Identifier
mass ¹	Mass
dia ¹	Diameter
mToA ¹	Mass to Area Ratio
sma ¹	Semi-major axis
ecc ¹	Eccentricity
inc ¹	Inclination
raan ¹	Right Ascension of the Ascending Node
aop ¹	Argument of Pericenter
man ¹	Mean Anomanly
collisionRadius	Collision Radius
numberCascadingCycles	Number of cascading cycles
maxDistance	Maximum distance between objects

- Performed flux evaluation on the current MASTER 2013 population
- Parameter variation SMA: 6600-9200 km; 100 km steps INC: 0-100 deg; 10 deg steps
- Output data points used as input for a multivariant polynominal regression
- Approx. function for the flux
- flux = f(d, a, i)

Coming Soon

http://redshift-h2020.eu/

Thank you

redshift@deimos-space.com www.deimos-space.com