

AO-Car: Transfer of Space Technology to Autonomous Driving with the Use of WORHP

Laura Sommer, Matthias Rick, Andreas Folkers, Christof Büskens

7th International Conference on Astrodynamics Tools and Techniques 6th - 9th November 2018

Transfer of space expertise into terrestrial applications

Transfer of space expertise into terrestrial applications

- Provide a test platform
- Increase public acceptance
- Technologies are available on earth

Research project AO-Car with terrestrial application

Autonomous and optimal navigation and control of a vehicle in urban areas

September 2016

March 2018

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

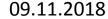
aufgrund eines Beschlusses des Deutschen Bundestages

09.11.2018

Research vehicle

- VW Passat GTE, Plug-in-Hybrid
- Equipped with
 - Laser scanners
 - Ultrasonic sensors
 - GNSS
 - Radar
 - Camera systems
- Control loop with a frequency of 50Hz

Goals of the research project AO-Car


Autonomous exploration of a parking lot including

- lane keeping in corridors
- turning maneuvers
- obstacle avoidance
- emergency stops
- controlled stopping
- parking

© Geo-Basis/BKG 2009

Trajectory planning and control approach

Transfer the vehicle from state A to state B

respecting its dynamics

without any collision

and minimizing an individual optimization criterion.

Trajectory planning and control approach

Transfer the vehicle from state A to state B spacecraft

respecting its dynamics

without any collision

and minimizing an individual optimization criterion.

Optimal control problem (OCP)

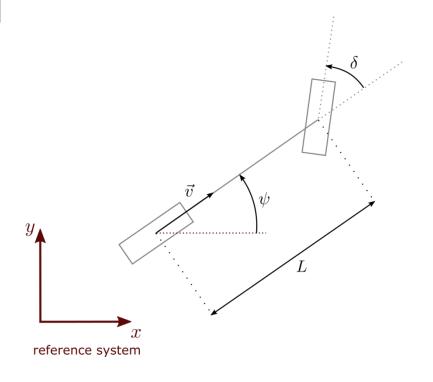
$$\begin{aligned} & \min_{z,u,T} \quad J(z,u,T) & J \in \mathcal{C}^1(\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}, \mathbb{R}), \\ & \text{s.t. } \dot{z}(t) = f(z(t), u(t)), & z \in \mathcal{C}^1([0,T], \mathbb{R}^n), \\ & z(0) = z_0, \quad z(T) = z_T, & u \in \mathcal{C}^0([0,T], \mathbb{R}^m), \\ & z_{\min} \leq z(t) \leq z_{\max}, & C \in \mathcal{C}^1(\mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}, \mathbb{R}^c), \\ & u_{\min} \leq u(t) \leq u_{\max}, & f \in \mathcal{C}^1(\mathbb{R}^n \times \mathbb{R}^m, \mathbb{R}^n). \end{aligned}$$

Kinematic single track model

System dynamics:

$$\dot{x} = v \cdot \cos(\psi),$$

$$\dot{y} = v \cdot \sin(\psi),$$

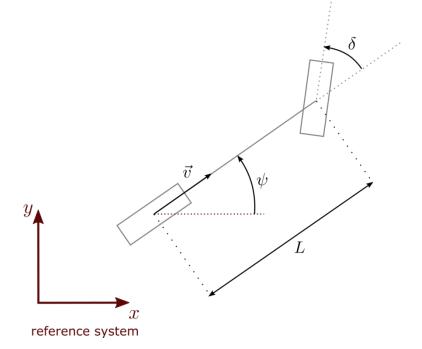

$$\dot{v} = a$$
,

$$\dot{a} = j$$
.

$$\dot{\psi} = v \cdot \frac{\tan(\delta)}{L},$$

$$\dot{\delta}=\omega_{\delta},$$

$$\dot{\omega}_{\delta} = a_{\delta},$$



Kinematic single track model

System dynamics:

$$\dot{x} = v \cdot \cos(\psi),$$
 $\dot{\psi} = v \cdot \frac{\tan(\delta)}{L},$ $\dot{y} = v \cdot \sin(\psi),$ $\dot{\delta} = \omega_{\delta},$ $\dot{v} = a,$ $\dot{\omega}_{\delta} = a_{\delta},$ $\dot{a} = j.$

Physical limits and limitations due to comfort reasons:

$$egin{array}{ll} v_{\min} & \leq v \leq v_{\max}, & \delta_{\min} \leq \delta \leq \delta_{\max}, \ a_{\min} \leq a \leq a_{\max}, & \omega_{\delta_{\min}} \leq \omega_{\delta} \leq \omega_{\delta_{\max}}. \end{array}$$

Optimization criteria

$$\begin{split} \tilde{J}(z, u, T) := & w_0 T \\ &+ \int_0^T w_1 \omega_{\delta}^2 + w_2 a^2 + w_3 j^2 + w_4 a_{\delta}^2 \mathrm{d}t \\ &+ \int_0^T w_5 (v - v_{\mathsf{set}})^2 \mathrm{d}t. \end{split}$$

Process time

Energy & comfort

Keep desired speed

Optimization criteria

$$\begin{split} \tilde{J}(z, u, T) := & w_0 T \\ & + \int_0^T w_1 \omega_{\delta}^2 + w_2 a^2 + w_3 j^2 + w_4 a_{\delta}^2 \mathrm{d}t \\ & + \int_0^T w_5 (v - v_{\mathsf{set}})^2 \mathrm{d}t. \end{split}$$

Deviation from desired target state:

Case
$$v_T = 0 \, \text{km/h}$$
:

$$J_T(z, u, T) := w_6(x(T) - x_T)^2 + w_7(y(T) - y_T)^2 + w_8(\psi(T) - \psi_T)^2 + w_9(\delta(T) - \delta_T)^2.$$

Process time

Energy & comfort

Keep desired speed

$$J(z, u, T) = \tilde{J}(z, u, T) + J_T(z, u, T)$$

Optimization criteria

$$\begin{split} \tilde{J}(z, u, T) := & w_0 T \\ &+ \int_0^T w_1 \omega_{\delta}^2 + w_2 a^2 + w_3 j^2 + w_4 a_{\delta}^2 \mathrm{d}t \\ &+ \int_0^T w_5 (v - v_{\text{set}})^2 \mathrm{d}t. \end{split}$$

Process time

Energy & comfort

Keep desired speed

Deviation from desired target state:

Case
$$v_T = 0 \, \text{km/h}$$
:

$$J_T(z, u, T) := w_6(x(T) - x_T)^2 + w_7(y(T) - y_T)^2 + w_8(\psi(T) - \psi_T)^2 + w_9(\delta(T) - \delta_T)^2.$$

Case $v_T > 0 \,\mathrm{km/h}$:

$$x(T) \in [x_T - \varepsilon_x, x_T + \varepsilon_x],$$

$$y(T) \in [y_T - \varepsilon_y, y_T + \varepsilon_y],$$

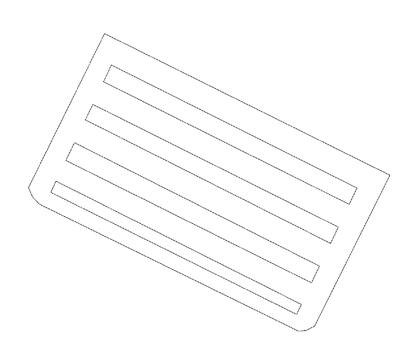
$$\psi(T) \in [\psi_T - \varepsilon_\psi, \psi_T + \varepsilon_\psi],$$

$$\delta(T) \in [\delta_T - \varepsilon_\delta, \delta_T + \varepsilon_\delta],$$

$$\varepsilon_x, \varepsilon_y, \varepsilon_\psi, \varepsilon_\delta > 0.$$

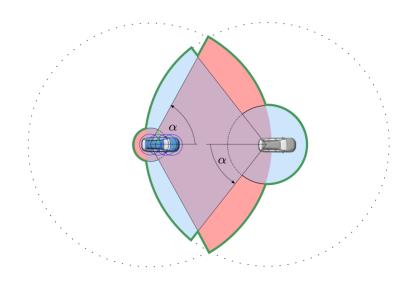
$$J(z, u, T) = \tilde{J}(z, u, T)$$

$$J(z, u, T) = \tilde{J}(z, u, T) + J_T(z, u, T)$$

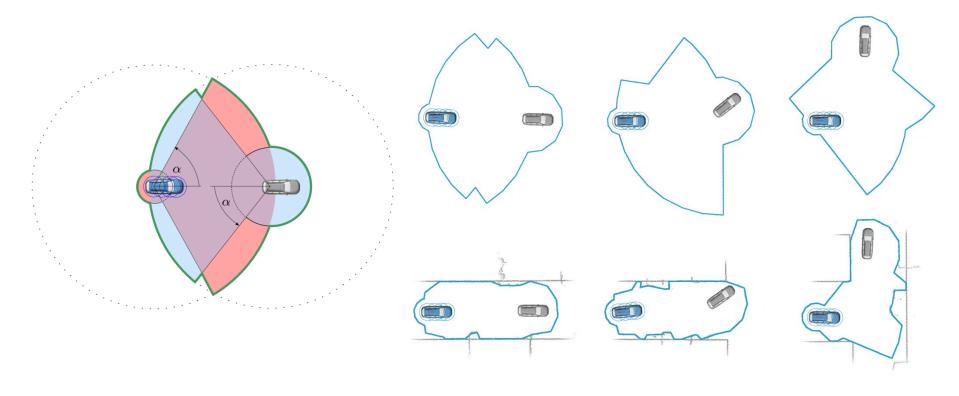


Predefined restrictions of the parking lot

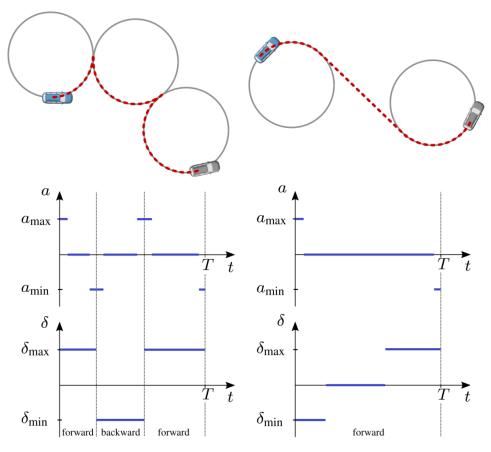
© Geo-Basis/BKG 2009



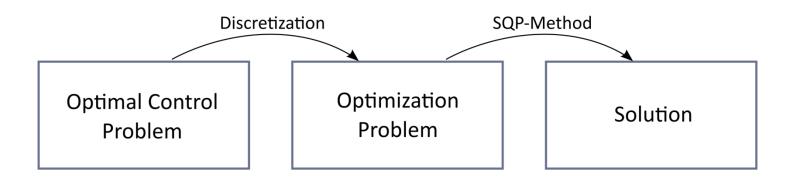
Construction of feasibility polygons



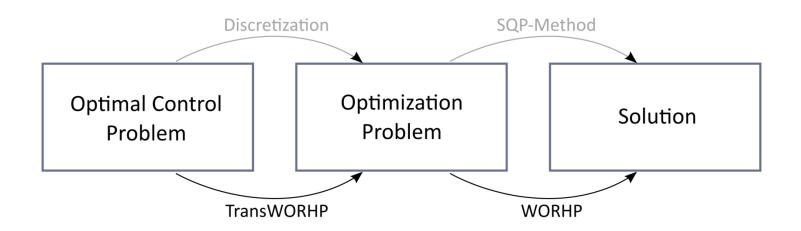
Construction of feasibility polygons



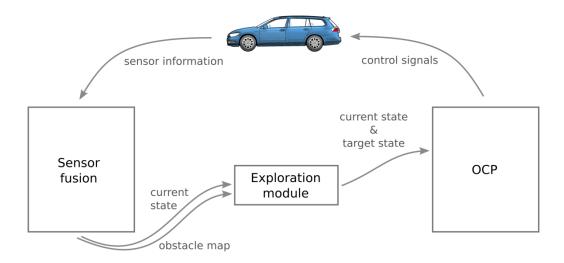
Initial guess based on Reeds-Shepp paths



Solution of the OCP

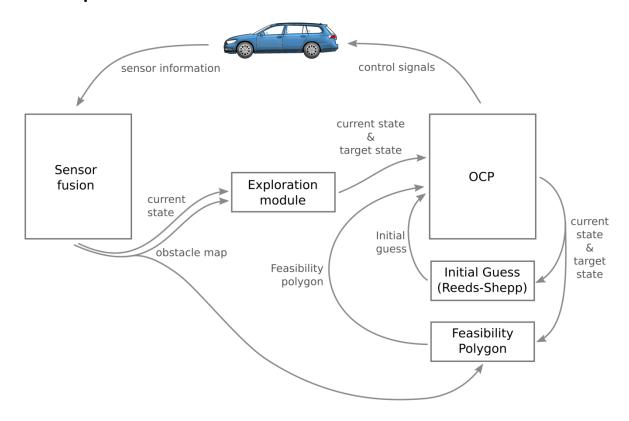


Solution of the OCP



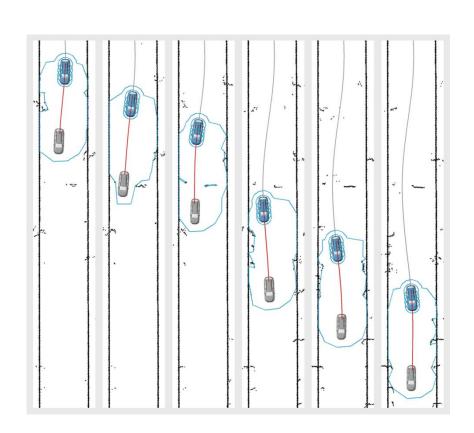
Control loop (simplified)

Nonlinear model predictive control

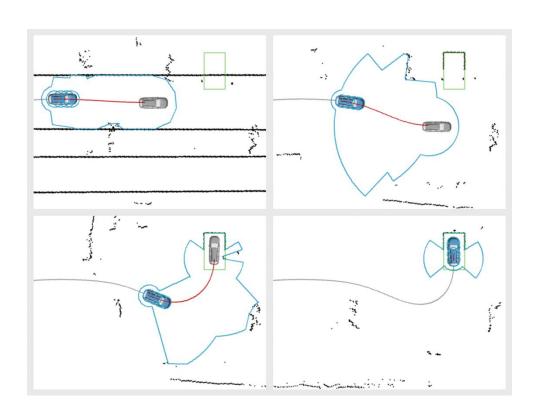


Control loop (simplified)

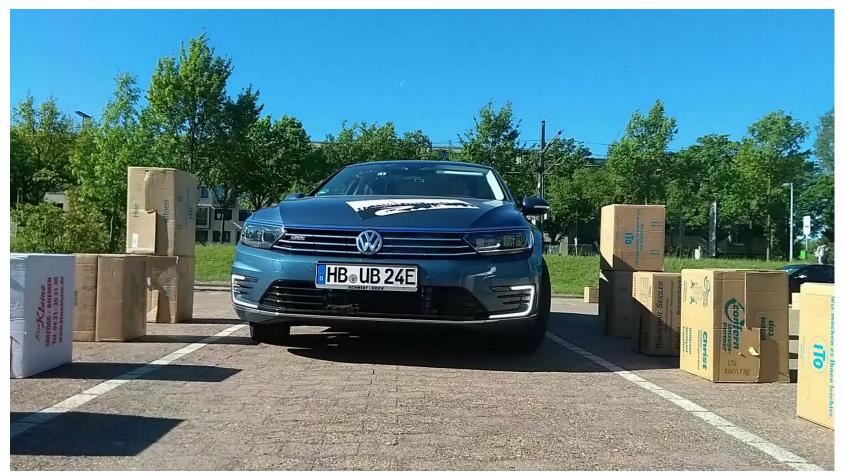
Nonlinear model predictive control



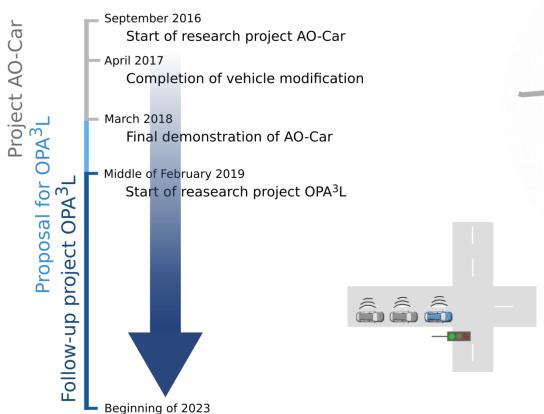
Experiments – Narrowing of the lane

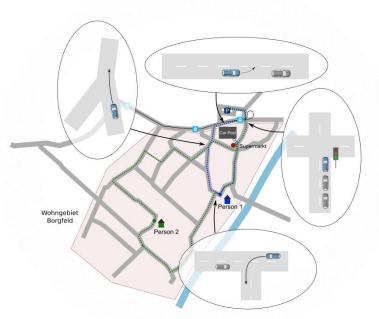


Experiments – Parking



Impressions





Outlook and future research

Final demonstration of OPA³L

Vehicle on demand concept and cooperative maneuvers

Performance

	Exploration	Narrowing	Parking
Mean computing time			
optimal	$33\mathrm{ms}$	$35\mathrm{ms}$	$70\mathrm{ms}$
non-optimal	$104\mathrm{ms}$	$251\mathrm{ms}$	-
total	$33\mathrm{ms}$	$41\mathrm{ms}$	$70\mathrm{ms}$
Standard deviation			
optimal	$11\mathrm{ms}$	$19\mathrm{ms}$	$49\mathrm{ms}$
non-optimal	$121\mathrm{ms}$	$169\mathrm{ms}$	-
total	$17\mathrm{ms}$	$49\mathrm{ms}$	$49\mathrm{ms}$
#Computations	2486	750	480
# Optimal	2462	725	468
#Not optimal (feasible)	18	9	12
# Not optimal (unacc.)	6	16	0
Rate of unacc. solutions	0.24%	2.13%	0%
#Relax	2	4	12

