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Design of libration point formations

Two points of view on the design of a libration point FF:

• the optimal control problem

The reference relative motion is defined by hand; the 

control just ensures its tracking.

• the natural motion search problem

Natural trajectories are sought that best fit mission 

requirements. The control ensures tracking and, if 

needed, refinement of the natural motion found.
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Circular restricted three-body problem
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Linearized dynamics in the vicinity of 
collinear libration points
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New non-dimensional coordinates near the L1/L2 point:

is a distance from L1/L2 to the smaller primary

Solution to linearized equations:

Planar 
frequency

Vertical 
frequency

Sun-Earth L1 2.0864519 2.0152089

Sun-Earth L2 2.0570158 1.9850765



Lindstedt-Poincaré series

• Lindstedt-Poincaré series approximate the central 

manifold

• For (quasi-)periodic libration point orbits, two small 

parameters introduced are the in-plane and out-of-

plane amplitudes

• Any invariant torus of (quasi-)periodic trajectories is 

parameterized by two amplitudes and two phases

• In this study, all the numerical examples are for Sun-

Earth L2 Lissajous orbits
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Complex form of Lindstedt-Poincaré 
series for Lissajous orbits
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Complex form of Lindstedt-Poincaré 
series for Lissajous orbits
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Complex form of Lindstedt-Poincaré 
series for Lissajous orbits
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The procedure of calculating 

the coefficients and the tables 

of coefficients for the Sun-Earth 

L1 and L2 points are presented 

in the Volume III of the famous 

monograph by Gómez et al.



Differential and relative parameters for 
the description of relative motion

The relative position vector meets the same 

linearized equations, so we can write
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Differential and relative parameters for 
the description of relative motion

The relative position vector meets the same 

linearized equations, so we can write

Two sets of variables can be used for describing the relative 

motion in the linear approximation:

• differential amplitudes and phases 

• relative amplitudes and phases
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Required order of approximation
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Upon integrating 
the equations of 
motion at π time 
units, the error 
shall not exceed 
10-6 distance units

Adapted from W.S. Koon et al. Dynamical Systems, the Three-
Body Problem and Space Mission Design, Springer-Verlag, 2008
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Upon integrating 
the equations of 
motion at π time 
units, the error 
shall not exceed 
10-6 distance units

Adapted from W.S. Koon et al. Dynamical Systems, the Three-
Body Problem and Space Mission Design, Springer-Verlag, 2008

Gaia 
Lissajous 

orbit



Reference orbit (linear approximation)
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Reference orbit: Lissajous
110,000 km x 90,000 km



Reference orbit (15th-order LP series)
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Reference orbit: Lissajous
110,000 km x 90,000 km
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Some typical performance metrics

• Relative distance

 Should keep the relative distance constant

• Projected relative distance

 Should keep the projected relative distance constant 

(the relative trajectory is a projected circular orbit)

• Angle between the relative position

vector and a given vector

 Should be aligned along some direction
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The optimization problem we have

• Any formation performance metric can be expressed by 

symbolically manipulating the LP series

• Just four variables are to be optimized no matter the LP 

series of what order of approximation we exploit

• No numerical integration is required for calculating the 

objective function. It is very important in the highly 

unstable dynamical environment.

• An initial guess can often be obtained analytically from 

the linear approximation. The hierarchy of models with 

increasing approximation order can be leveraged.
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Nelder-Mead simplex algorithm

• One of the most popular derivative-free optimization 

methods
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Nelder-Mead simplex algorithm

• One of the most popular derivative-free optimization 

methods

• The objective function is evaluated at the vertices of 

a simplex in the search space

• Based on the objective function values, this simplex 

is modified (reflected, expanded, contracted, shrunk)

• Implemented in Matlab (fminsearch)

• Works exceptionally well in a low-dimension search 

space
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some time period, we can define the following function:
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What about constraints?

• Constraints can be incorporated in the objective function 

as penalty terms. For example, if we target some interval 

for the relative distance for 

some time period, we can define the following function:

Here the angle brackets denote the average value over a 

time period of interest, k1 and k2 are some large penalty 

weight coefficients,
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Performance metric #1:
(squared) relative distance
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Constant part Short-periodic part

Beating with the beat frequency



No solution for long time periods exist!
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Minimum variation 
in the squared 
relative distance is 
more than 80%
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No solution for long time periods exist!
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Minimum variation 
in the squared 
relative distance is 
more than 80%

It is unacceptable 
for most of real 
applications

The performance 
can be good for a 
shorter interval if 
phasing is correct



Analytically optimized solution
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Analytically optimized solution
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is the tolerance for the 
squared relative distance



Performance: from the analytical 
guess to ephemeris trajectories
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Performance optimized over the extended 
time interval (with the same initial guess)
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Performance metric #2:
projected relative distance
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Performance metric #2:
projected relative distance
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Constant part Short-periodic part

Long-periodic part

Generally more difficult to analyze, but in some cases 
it is as simple as for the previous performance metric.
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Performance metric #2:
projected relative distance
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Constant part Short-periodic part

Beating with the beat frequency

sun vector



Performance: from the analytical 
guess to ephemeris trajectories
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Relative trajectory projected onto the 
plane orthogonal to the sun vector
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Red: ideal 100-km circle

Blue: solution in the 
ephemeris model

Tolerance: 10%

Initial date: 01.01.2020

Flight duration: 320 days



The same initial guess works well
for the 20% longer time interval
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Red: ideal 100-km circle

Blue: solution in the 
ephemeris model

Tolerance: 10%

Initial date: 01.01.2020

Flight duration: 384 days



Equilateral triangle formation design

• In the case of an equilateral triangle formation, three 

intersatellite distances are to be maintained equal to 

a specified value

• From the linear approximation analysis: the relative 

amplitudes in each pair should be equal to

the corresponding phases should be shifted by ±π/3
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Analytical solution obtained
in the linear approximation
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Analytical solution substituted
in the 15th-order approximation
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Solution numerically optimized
based on the analytical initial guess
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Numerically optimized solution
adapted to the ephemeris model
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Analytical initial guess is often critical!
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Smart initial guess Zero initial guess

2 s/c, metric #1, 
predicted time

15 67

2 s/c, metric #1, 
extended time

23 74

2 s/c, metric #2,
predicted time

5 39

3 s/c, metric #1, 
predicted time

92 Not converged

Number of iterations for the Nelder-Mead algorithm to converge
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Conclusions

• Lindstedt-Poincaré series allows parameterizing the 

relative motion by a quite small number of variables 

for any order of approximation

• Formation performance metrics are calculated w/o 

numerical integration of highly unstable trajectories

• Nelder-Mead simplex algorithm is appropriate, and it 

usually converges

• Analytical initial guess from the linear approximation 

is very helpful to ensure fast and regular convergence
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Planar frequency behavior



Vertical frequency behavior



Frequency difference behavior



Performance metric #1: analytics

The upper envelope of this beating curve is as follows:
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Performance metric #1: analytics

We need to maximize the distance between the 

adjacent roots of the equation

s.t.



Performance metric #1: analytics

Rearranging yields

s.t.

where

Obviously, the right-hand side should be minimized.



Performance metric #1: analytics

Equivalently,

where

min



Performance metric #1: analytics

The minimum is attained at the point

which weakly depends on ε



Performance metric #1: analytics



Performance metric #1: analytics

As a result, we have

and the natural flight duration estimate


