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Motivation & Background

ANPLE (ongoing ESA activity) - End Goals

-Investigate navigation techniques applicable to a Safe, Precise Mars EDL mission:
- Trajectory Design: Direct Entry from Interplanetary Transfer

- Orbit determination + control: included in design cycle (reference timelines for sensor use and clear
separation between ground + onboard functions)

- GNC: 6DOF system applicable to all mission phases from entry interface to touchdown

-HDA: No HDA assumed for the retropropulsive mission (beacons only), where landing target is assumed to
be pre-prepared

-Validation: via MC sims, targeting <<100m landing accuracy (using beacons)

-Assess effects of evolving Avionics + GN&C technologies

- Design to Real-time Implementation: considers real, existing, available sensors + processing units,
assesses computational costs, data acquisition + processing timing constraints, storage, etc. While
considering incremental upgrades with new technologies as per current tech. dev. timelines

- Performance, constraints and limitations of navigation solution: beacons-only solutions for absolute
navigation (aided by ADOR, IMU calibration phase prior to entry, radar altimeter for descent and landing)

- Designed for straightforward Processor-in-the-loop compatibility
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1) Approach
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Mission Analysis — Trajectory Design

Trajectory Design

-Interplanetary Transfer:

- Earth-Mars launch window in 2024

- Entry aim point calculated for ballistic
atmospheric segment

- Orbit Determination assumes range, range-
rate, ADOR

-Entry Point:
- Flight path angle calculated for a 10-g peak
deceleration, acceptable heat flux
- MSL-like guidance and control assumed

-Atmospheric segment:

- Targeted landing site: Exomars 2016 LS

- Atmospheric segment includes entry, TAEM
and (nominally optimal) retropropulsive
descent

- Mass loss events modelled (TPS, back cover

ejection, continuous mass flow associated to
thrust)

tof [months]
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Mission Analysis — Trajectory Design

Trajectory Design Assumptions

-Entry Phase: MsL-like guidance and control
- Range control + heading alignment + transition to TAEM

-Descent: Shuttle TAEM-like

- Energy management indicates required length of segment
- Polynomial segments lengthen/shorten path to achieve desirable

conditions (alt, lat, long) at ignition

-Powered Descent: Retropropulsive
-Nominal ignition conditions: optimal

- 2.3km altitude, 220-230m/s

- Calculated (“actual’) ignition conditions
- onboard assessment from alt-vel estimates
- linear Apollo-like descent acceleration profile assumed (1.2<T/W,<1.8)
- alternative implementation: convex optimization with line search for

optimal ignition time (T/W,<1.8)
-Terminal Descent
- Pure vertical descent from 10m
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Entry Phase - Trajectory Design

Entry Trajectory Design Process
-Optimized Trajectory with MSL-like
guidance in-the-loop:
-Range Control phase: bank continuously

tracks velocity-referenced range-to-target,
to minimize PDI dispersions;

-Heading Alignment phase: bank used to
align capsule velocity with target direction;

-Final entry position such that remaining
atmospheric flight leads to target LS

-Reference bank magnitude chosen to
maximize control margins
-nominal trajectory w/ two bank reversals
-Bank Profiler: shapes slew manoeuvres,

forces limited angular rates+accelerations
in phase transitions & bank reversals.
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Retropropulsive Phase - Trajectory Design

Retropropulsion Phase Design Process caemama

-Baseline trajectory: optimized for T/W=1.8

-Actual (simulated) descent trajectory
generation:
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-Alternative 2: RT Fuel-Optimal Guidance

- Pinpoint landing problem posed as convex, 1
second-order cone problem

- Line search determines fuel-optimal powered
descent duration — ignition time

- Descent trajectory re-adjusted in-the-loop @10Hz
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Dispersed Trajectories - State Knowledge (full GNC-in-the-Loop)
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Conclusions

Summary & Conclusions

-A complete mission design cycle was performed, including the interplanetary
transfer, approach, entry, and propulsive-only descent and landing phases of a
Mars EDL mission

-A covariance analysis was used in support of the mission design tasks, to
identify acceptable initial knowledge/dispersions for pinpoint landing, as well as
suitable sensor suite (from a list of existing sensors & processing units).

-MSL-like guidance algorithm used in-the-loop for entry phase trajectory design

- Selection of flight path angle and reference bank angle (extract maximum margin)
- Iterative entry point selection refinement
-Maximum reference trajectory feasibility
-Fuel-optimal guidance assumed for reference retropropulsive trajectory design
-For a T/W of 1.8 and an Exomars-like system, ignition occurs at 2.3km alt. and M=1.1

-An End-to-End Trajectory Design has been performed in support of Safe,
Pinpoint Mars Landing with Retropropulsion

www.spinworks.pt © 7th ICATT 11



