

Semi-Analytical Framework for Precise Relative Motion in Low Earth Orbits

G. Gaias, C. Colombo

7th ICATT 6-9 Nov 2018 DLR Oberpfaffenhofen, Germany

Formation Flying applications, multi-satellite missions for

- sparse instruments
- spacecraft rendezvous

The COMPASS project

- understanding and use of the orbital perturbations in several fields
- here focus on the relative motion:
 - exploit the peculiarities of the orbital dynamics
 - to enhance current GNC (guidance navigation and control) algorithms
 - to improve the level of autonomy of such GNC systems

Contents

Objectives

Background and Design Philosophy

Framework Structure

Relative Dynamics Modelling Earth mass distribution Differential aerodynamic drag

Conclusions

Contents

Objectives

Background and Design Philosophy

Framework Structure

Relative Dynamics Modelling Earth mass distribution Differential aerodynamic drag

Conclusions

Objectives and Motivations

Development of a framework for relative dynamics modelling

- semi-analytical: computational efficiency, smart state variables
- precise: accuracy, long-scale scenarios
- modular: included perturbations a/o accuracy to user's need

Typical applications

(special focus on the Low Earth Orbit LEO region)

- optimal (long-time) relative guidance
- relative navigation filters, initial relative orbit determination (computational load, convergence)

Contents

Objectives

Background and Design Philosophy

Framework Structure

Relative Dynamics Modelling Earth mass distribution Differential aerodynamic drag

Conclusions

OE-based Parametrisation

Relative dynamics: choice of the state variables

- Orbital Elements (OEs) based set
- seminal works from Schaub¹and Alfriend²

Main advantages

- reducing the linearisation error in the initial conditions
- simplifies the inclusion of orbital perturbations
- celestial mechanics methods for efficient placement of orbit correction manoeuvres

²D-W Gim, K.T. Alfriend, State Transition Matrix of Relative Motion for the Perturbed Noncircular Reference Orbit, jGCD, 2003.

¹H. Schaub et Al., Spacecraft formation flying control using mean orbit elements, jAS 2000.

OE differences or functions thereof

- possible singularities in their definition (classical, non-singular, equinoctial, Hoots)
- canonical structure (Delaunay, Poincaré, Whittaker)

Choice to be driven by

- application domain (singularities)
- conciseness/compactness of the related dynamical system
- straightforward visualization of the relative orbits' geometry

- Use of **Relative Orbital Elements** (ROEs)
 - suitable for LEO environment and further advantages
- Definition (d: deputy, c: chief)

$$\begin{array}{lll} \delta a = & (a_{\rm d} - a_{\rm c})/a_{\rm c} & \mbox{rel. semi-major axis} \\ \delta \lambda = & (u_{\rm d} - u_{\rm c}) + (\Omega_{\rm d} - \Omega_{\rm c}) \cos i_{\rm c} & \mbox{rel. mean longitude} \\ \delta e_x = e_{x,{\rm d}} - e_{x,{\rm c}} & \delta e_y = e_{y,{\rm d}} - e_{y,{\rm c}} & \mbox{rel. eccentricity vector} \\ \delta i_x = i_{\rm d} - i_{\rm c} & \delta i_y = (\Omega_{\rm d} - \Omega_{\rm c}) \sin i_{\rm c} & \mbox{rel. inclination vector} \end{array}$$

dimensionless state variable

$$\delta \boldsymbol{\alpha} = \left(\delta \boldsymbol{a}, \delta \lambda, \delta \boldsymbol{e}_{x}, \delta \boldsymbol{e}_{y}, \delta \boldsymbol{i}_{x}, \delta \boldsymbol{i}_{y}\right)^{\mathsf{T}}$$

ROEs and Motion Visualisation

- ROEs merge physical insight of absolute and relative orbits
 - functions of the Hill-Clohessy-Wiltshire (HCW) integration constants³

³S. D'Amico, Relative Orbital Elements as Integration Constants of Hill's Equations, DLR-GSOC TechNote 2005.

ROEs and Guidance

Interesting properties deriving from Gauss' variational equations

- relationship between delta-v optimal man. location and ROE changes⁴
- length of ROE changes as metric of delta-v cost
- analytical delta-v optimal manoeuvring scheme (3-T + 1-N)

⁴G. Gaias, S. D'Amico, Impulsive Maneuvers for Formation Reconfiguration using Relative Orbital Elements, jGCD 2015.

C MPAS

ROEs and Formation Safety

- Straightforward one-orbit minimum satellites' distance normal to the flight direction
 - (almost-bounded)
 rel. eccentricity/inclination
 vectors phasing⁵
 - (drifting-orbits) available analytical expression accounting for δa^6

э

⁵O. Montenbruck et Al., *E/I-Vector Separation for Safe Switching of the GRACE Formation*, jAST 2006.

⁶G. Gaias, J.-S. Ardaens, Design challenges and safety concept for the AVANTI experiment, ActaA 2016.

Flight Heritage of the ROE-based Approach

- **Spaceborne systems** of following DLR/GSOC experiments
 - GPS-based relative navigation (cooperative), formation-keeping
 - PRISMA mission: SAFE⁷- Spaceborne Autonomous Formation-Flying Experiment
 - TanDEM-X-TerraSAR-X mission: TAFF⁸- TanDEM-X Autonomous Formation Flying
 - Vision-based navigation (noncooperative), rendezvous
 - FireBIRD mission: AVANTI⁹- Autonomous Vision Approach Navigation and Target Identification

Э

⁷S. D'Amico et Al., Spaceborne Autonomous Formation-Flying Experiment on the PRISMA Mission, jGCD 2012.

⁸J.-S. Ardaens et Al. Early Flight Results from the TanDEM-X Autonomous Formation Flying System, 4th SFFMT 2011.

⁹G. Gaias, J. -S. Ardaens, Flight Demonstration of Autonomous Noncooperative Rendezvous in Low Earth Orbit, jGCD 2018.

Project Contributions

Further development of the ROE-based approach to

- improve the achievable precision (time-scale, consistency)
- include more effects (general methodology, e.g. continuous control as special perturbation)

Specific contributions

- compact first-order dynamical system including the whole set of terms of the geopotential
- closed-form State Transition Matrix (STM) for such first-order system
- insight to efficiently model the effects of differential aerodynamic drag

Contents

Objectives

Background and Design Philosophy

Framework Structure

Relative Dynamics Modelling Earth mass distribution Differential aerodynamic drag

Conclusions

Framework Structure

Input

- chief s/c all infos
- deputy: state or observations

Main elements

- core ROE-based relative dynamics
- (case specific relative GNC algorithms)

Further characteristics

- mixed variables (Cartesian, OEs)
- different reference systems

Propagation/Guidance Set Up

- **Goal**: relative trajectory close to the aimed reference $\delta \alpha^{\text{ref}}$,
 - simple propagation
 - control policy synthesis
- minimising the y ỹ error in the deputy state
 - instruments operating in best conditions
 - minimum true position error

Navigation Set Up

Goal: estimation of the relative state δα,

- rel. navigation filter
- initial rel. orbit determination

minimising the h - h observation residuals

- accurate estimation
- robustness, convergence

э

18 of 38

Accuracy and Consistency

Propagation/Guidance

Navigation

- Simulation environment: inaccuracies/inconsistencies cancel with each other (overestimation of the *true* precision of the framework)
- **True environment**: accuracy depending from whole chain of actions

Interfaces

Interfacing elements to

- convert Cartesian state into OEs
- handle time synchronization and reference systems
- two-way conversion of mean/osculating OEs
- Accurate mean/osculating OEs conversion
 - crucial step to achieve overall accuracy
 - ad-hoc algorithm, analytical, non-singular, computationally light
 - joint work with Dr. Lara (Univ. La Rioja), to be presented at ISSFD-2019

Contents

Objectives

Background and Design Philosophy

Framework Structure

Relative Dynamics Modelling Earth mass distribution Differential aerodynamic drag

Conclusions

Earth Mass Distribution

 Gravity field expressed as geopotential function of spherical harmonics¹⁰ order *I*, degree *m*

$$V_{lmpq} = -\frac{\mu}{a} J_{lm} \left(\frac{R_{\oplus}}{a}\right)^{l} F_{lmp}(i) G_{lpq}(e) \begin{cases} \cos \\ \sin \end{cases} \begin{cases} (l-m) \text{ even} \\ (l-m) \text{ odd} \end{cases} [\Psi_{lmpq}(\Omega, M, \omega, \theta)]$$

Mean OE set out of interfacing blocks

- mean: short- and long-periodic terms removed
- secular terms: slow-varying variables, GNC insight
 - only $\dot{\Omega}$, $\dot{\omega}$, \dot{M} function of $(a, e, i, J_2, J_2^2, J_4, J_6, ..., J_p)$, even zonal contributions
- relative dynamics: relative secular terms

¹⁰W. M. Kaula, Theory of Satellites Geodesy, 1966.

Linearised Relative Dynamics

First-order relative dynamics in ROEs

$$\delta \dot{\alpha} = A(\alpha_{c}) \, \delta \alpha$$
 with $\alpha_{c} = (a, e, i, \Omega, \omega, u)^{\mathsf{T}}$

approach as in ¹¹

$$\frac{d}{dt}(\delta\alpha_i) = \frac{d}{dt} \left(f_i(\boldsymbol{\alpha}_{\mathsf{d}}) - f_i(\boldsymbol{\alpha}_{\mathsf{c}}) \right) \approx \sum_j \left. \frac{\partial g_i}{\partial \alpha_j} \right|_{\mathsf{c}} \Delta\alpha_j$$

- ${\scriptstyle \bullet}$ linearised relations between $\delta \alpha$ and $\Delta \alpha$
 - only partials w.r.t. a, e, i
 - recurring structure and dependence on only (a, e, i) and J_{even}

¹¹G. Gaias et Al., Model of J₂ Perturbed Satellite Relative Motion with Time- Varying Differential Drag, CelMechDA 2015.

System Plant Matrix

Plant matrix with structure

- same structure of J_2 only case
- now account for whole J_p terms
- linear time variant (LTV) due to ω(t) in rel. eccentricity vector (i.e., third and fourth rows)

First-Order State Transition Matrix

- Linear time invariant (LTI) system using the approach of¹²
 - change of variables $T : \delta \alpha \mapsto \delta \alpha'$ $\delta \mathbf{e}' = R(\omega) \delta \mathbf{e}$
 - resulting Ã is nilpotent

• original STM from: $\Phi_{\text{Jall}} = T^{-1}(\alpha_{\text{c}}(t_{\text{f}})) \left(I + \tilde{A}(\alpha_{\text{c}})\right) T(\alpha_{\text{c}}(t_{0}))$

¹²A. W. Koenig Al., New State Transition Matrices for Spacecraft Relative Motion in Perturbed Orbits, jGCD 2017.

Achievable Accuracy

$a\delta lpha_0 = (-200.0, 4500.0, 0.0, 250.0, 0.0, 300.0)^{\mathsf{T}}$ meters; 6×6 field

æ

26 of 38

Summary Geopotential Effect

Inclusion of the Earth mass distribution perturbation

- Inearised A valid for whatever order, l > 6 negligible contributions
- if small *e* approx. acceptable \Rightarrow consistent to neglect l > 2 terms
- errors in the initialization (i.e., $\delta \alpha_0$) nullify the benefit of including the effects of higher gravitational orders
- Φ_{Jall} very practical for LEO subject to negligible drag (i.e., > 700 km)
 linearisation in OEs ⇒ whole typical formation-flying domain
 - Φ_{Jall} valid also for the eccentric case

Contents

Objectives

Background and Design Philosophy

Framework Structure

Relative Dynamics Modelling

Earth mass distribution Differential aerodynamic drag

Conclusions

Aerodynamic Drag

General difficulties in modelling this perturbation

- inaccuracy/complexity of upper-atmosphere density models
- ballistic coefficient $B = C_D S/m$ depending on attitude
- unknown drag coefficient C_D , function of attitude
- Possible OEs-based approaches
 - physical: expanding absolute mean OEs time variation
 - engineering: introducing empirical rel. acceleration
- Both require additional parameters to be estimated

Physical Approach

Methodology proposed in¹³

- one-orbit averaged Gauss variational eqs. subject to drag
- exponential model of density, only tangential acc., no v_{atm}^{14}
- expansion of $\dot{\bar{a}}$ and $\dot{\bar{e}}$ w.r.t. *a* and *e*

Remarks

- approach not portable to ROEs as done for the geopotential
- Inearised equations require numerical integration
- at least 2 additional parameters (i.e., true ρ_p and mean ΔB)
- little insight in the relative acceleration in local orbital frame

¹⁴D. King-Hele, Theory of satellite orbits in an atmosphere, 1964.

 $^{^{13}}$ D. Mishne, Formation Control of Satellites Subject to Drag Variations and J2 Perturbations, jGCD 2004.

Engineering Approach

- Methodology proposed in¹¹
 - non-conservative acc. more tractable in the local Cartesian frame RTN
 - equivalence between the linearised dynamics in RTN and OEs¹⁵
 - HCW eqs. two sharp pass-bands filter centred on 0, 1/P freq.¹⁶

Remarks

- 3 additional parameters, coeff. of the empirical acceleration
- they correspond to mean $\delta \dot{a}$, $\delta \dot{e}_x$, $\delta \dot{e}_y$ due to $\Delta drag$
- availability of closed-form STM for the state $(\delta \alpha, \delta \dot{a}, \delta \dot{e}_x, \delta \dot{e}_y)^{\mathsf{T}}$

¹⁶O. L. Colombo, The dynamics of global position system orbits and the determination of precise ephemerides, jGR 1989.

¹¹ G. Gaias et Al., Model of J₂ Perturbed Satellite Relative Motion with Time- Varying Differential Drag, CelMechDA 2015.

¹⁵A. J. Sinclair et Al., Calibration of Linearized Solutions for Satellite Relative Motion, jGCD 2014.

Engineering Approach Reworked

HCW equations further **simplified** using Leonard's change of variables¹⁷

$$\mathbf{x} = (x, \dot{x}, y, \dot{y})^{\mathsf{T}} \mapsto \mathbf{\kappa} = (\bar{x}, \bar{y}, \gamma, \beta)^{\mathsf{T}} \quad \gamma = x - \bar{x}, \qquad \bar{x} = 4x + 2\dot{y}/n$$
$$\beta = y - \bar{y}, \qquad \bar{y} = y - 2\dot{x}/n$$

 \blacksquare HCW \mapsto decoupled double-integrator in \bar{y} and harmonic oscillator in β

In-plane ROEs related to κ

$$\begin{aligned} a(\delta a_0, \delta \lambda_0, \delta e_{x0}, \delta e_{y0})^{\mathsf{T}} &= (\bar{x}_0, \bar{y}_0, -\gamma_0, -\beta_0/2)^{\mathsf{T}} \\ a\delta \alpha^{\mathsf{ip}}(t) &= M\kappa(t) \qquad M = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -\cos(nt) & +\sin(nt)/2 \\ 0 & 0 & -\sin(nt) & -\cos(nt)/2 \end{bmatrix} \end{aligned}$$

More compact development, further insight

 $^{^{17}{\}rm C.}$ L. Leonard et Al., Orbital Formation keeping with Differential Drag, jGCD 1989.

Achievable Accuracy

 $a\delta lpha_0 = (0.0, 4500.0, 0.0, 250.0, 0.0, 300.0)^{\mathsf{T}}$ meters; 6×6 field and drag

AVANTI scenario, but varying attitude not considered

on in LEO 33 of 38

E

Meaning of the Empirical Acceleration

• True Δ drag acceleration in local RTN frame

$$\begin{aligned} \mathbf{a}_{\Delta \mathrm{D}}^{(\mathrm{RTN},\mathrm{c})} &= R_{\mathrm{RTN},\mathrm{d}}^{\mathrm{RTN},\mathrm{d}} R_{\mathrm{TOD}}^{\mathrm{RTN},\mathrm{d}} \, \mathbf{a}_{\mathrm{D},\mathrm{d}}^{(\mathrm{TOD})} - R_{\mathrm{TOD}}^{\mathrm{RTN},\mathrm{c}} \, \mathbf{a}_{\mathrm{D},\mathrm{c}}^{(\mathrm{TOD})} \\ \mathbf{a}_{\mathrm{D}}^{(\mathrm{TOD})} &= -\frac{1}{2} \rho B \, \|\mathbf{v} - \mathbf{v}_{\mathrm{atm}}\| \left(\mathbf{v} - \mathbf{v}_{\mathrm{atm}}\right) \end{aligned}$$

Possible simplifications (v_{atm}, frames)

$$egin{aligned} & a_{\Delta \mathrm{D}}^{(\mathrm{T})} = -(1/2)
ho_{\mathrm{d}} B_{\mathrm{d}} v_{\mathrm{d}}^2 + (1/2)
ho_{\mathrm{c}} B_{\mathrm{c}} v_{\mathrm{c}}^2 \ & a_{\Delta \mathrm{D}}^{(\mathrm{T})} = -(1/2)
ho_{\mathrm{c}} v_{\mathrm{c}}^2 (ar{B}_{\mathrm{d}} - ar{B}_{\mathrm{c}} (1+b)) \end{aligned}$$

Empirical acceleration (trigonometric approximation)

$$a_{\Delta D}^{(T)} = c_1 + c_2 \sin\left(\frac{2\pi}{P}t\right) + c_3 \cos\left(\frac{2\pi}{P}t\right)$$
$$c_1 = \frac{n}{2}a\delta\dot{a} \qquad c_2 = na\delta\dot{e}_x \qquad c_3 = na\delta\dot{e}_y$$

Summary Drag Effect

Inclusion of the differential drag perturbation

- \blacksquare closed-form STM for the linearised dynamics s.t. time-varying $\Delta drag$
- the small e approximation is used to derive such STM
- at most 3 additional parameters need to be estimated
- These parameters (i.e., $\delta \dot{a}$, $\delta \dot{e}_x$, and $\delta \dot{e}_y$)
 - represent the mean elements variation to the net of the geopotential effects (known very precisely)
 - density-model-free modelling/estimation
 - $\delta \dot{a}$ catches the mean effect due to $\rho v^2 \Delta B$
 - $\delta \dot{e}_x$, and $\delta \dot{e}_y$ catch the time-varying effects (e.g., $\rho(t)$, $\Delta B(t)$)

Contents

Objectives

Background and Design Philosophy

Framework Structure

Relative Dynamics Modelling Earth mass distribution Differential aerodynamic drag

Conclusions

- Description of semi-analytical framework for formation flying in LEO
- Elements, connections, and dynamical model to achieve high accuracy
- Linearised models taking into account both main perturbations
- Closed-form state transition matrices suitable for onboard applications

C erc POLITECNICO **MILANO 1863** This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 679086 - COMPASS) Semi-Analytical Framework for Precise Relative Motion in Low Earth Orbits Objectives Background Framework Geopotential Drag Conclusion

gabriella.gaias@polimi.it