JSatOrb: ISAE-SupAero’s Open-source Software Tool for Teaching Classical Orbital Calculations

Thibault Gateau, Julio Hernanz-Gonzalez, Theo Koudlansky, Lucien Sénaneuch and Patrice Labedan

2018 November 7
Teaching support

- Space Mechanics
- Mission Analysis
- Thermal Architecture
- Space Telecom
- Power system
- AOCS
- Launchers
- Project Management

...
ISAE-SUPAERO: Doing Space Stuff

Research & Support
- Engineering Projects
- Research Projects

Facilities
- UHF/VHF antenna/station
- S-Band antenna/station
- Control Center
- Clean Rooms ...

thibault.gateau@isae.fr
3U Nanosats projects on the way (more than these 3!)

- Entriesat
 - Phase D
- Eyesat
 - Phase D
- Nimph
 - Phase B1
1. ISAE-SUPAERO Software Legacy
 - Satorb
 - Simusat
 - Current Statement

2. JSatorb: a Satorb possible evolution
 - JSatorb: Increasing Modularity, First Attempt
 - JSatorb: Service Oriented Architecture

3. Conclusion & Questions
1. ISAE-SUPAERO Software Legacy
 - Satorb
 - Simusat
 - Current Statement

2. JSatorb: a Satorb possible evolution

3. Conclusion & Questions
ISAE-SUPAERO Space Software Suite

People involved

- Initiator (before 2001!):
 - Christian Colongo

- Current Dev Team:
 - Patrice Labedan
 - Guillaume Garrouste
 - Thibault Gateau

- Lot of support from:
 - Students Projects
 - Internships
 - PhD students
 - Collaborations (TUM)
Functionnalities

[Hernanz-Gonzales 2017]

1. Objects Creation
 - Satellites
 - Ground stations
 - Links

2. Analysis
 - Ephemeris
 - Manoeuvres
 - Coverage
 - Access
 - RF Links
 - Attitude

Intuitive GUI

- Adapted to students
Simulaunch
Kerbal Space Program before Kerbal Space Program...
ISAE-SUPAERO Software Legacy

Pros: Homemade
- Fit exactly to ISAE-SUPAERO needs
- Adapt what we want
- No intellectual property issue
- Short dev cycles

Cons: Homemade
- Not open-source, no community behind
- Costful for internal developers
- Not cross platform
- Validation by hand
ISAE-SUPAERO Software Legacy

JSatorb: a Satorb possible evolution
- JSatorb: Increasing Modularity, First Attempt
- JSatorb: Service Oriented Architecture

Conclusion & Questions
Create the germ of JSatOrb, a version of SatOrb in Java

- Student-focused learning tool
- Professional software for researchers

Implement a clear division in the coding

Calculations

User interface
Choosing an Astrodynamics Library

<table>
<thead>
<tr>
<th>Feature type</th>
<th>Software Features</th>
<th>SatOrb</th>
<th>OreKit</th>
<th>JAT</th>
<th>TUDAT</th>
<th>CelestLab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visualization</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Terminal</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>2D (planisphere)</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>3D (Earth)</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
</tr>
<tr>
<td>Ephemeris</td>
<td>Position/Velocity</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Keplerian Parameters</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Eclipses</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Manoeuvres</td>
<td>Impulse</td>
<td>-</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Continuous</td>
<td>-</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Time</td>
<td>UTC</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>TAI</td>
<td>-</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Julian</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>NORAD</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Propagators</td>
<td>Kepler</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Brouwer</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Mosaif</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>SGP4/SDP4</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Central</td>
<td>-</td>
<td>✔</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Lyddane</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Eckstein-Hescher</td>
<td>-</td>
<td>✔</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Cohessy Wiltshire</td>
<td>-</td>
<td>-</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td>Others</td>
<td>TLE Format</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Coverage</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Constellations</td>
<td>✔</td>
<td>-</td>
<td>✔</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ground stations</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Links</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Language</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>VisualBasic</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Java</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>C++</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
<tr>
<td></td>
<td>Scilab</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
<td>✔</td>
</tr>
</tbody>
</table>
JSatorb: Full Java solution? - JavaFX version
What about modularity?

Pros

- Fast to setup
- Fully Java oriented
- Classical testing/validation process
- Known territory...

Cons

- One heavy client
- Fully Java oriented
 - How to adapt it with other libraries?
 - Dependencie to the JVM...
- Still a heavy development process
Why developping “JSatorb”?

Satorb
- Pros: Homemade
 - Fit already with our needs
 - Years of support XP on it
- Cons: Monolithic block
 - Huge validation to do
 - Not cross platform
 - Data flow interface
 - Not standardized

JSatorb
- Cons: New Soft
 - Development Effort
 - Architecture evolution
- Pros: Linked to the world
 - Cross-plateform
 - Modularity
 - Long term compatibility
 - Using ”real“ Astrodynmamic libraries
Switching to a Service Oriented Architecture

Web oriented architecture
- Front-end for the user interface
- Back-end for the calculus stuff
Switching to a Service Oriented Architecture

Web oriented architecture
- Front-end for the user interface
- Back-end for the calculus stuff

Advantage
- Modularity (components oriented, user interface separated)
- Portability (browser)
Switching to a Service Oriented Architecture

Web oriented architecture
- Front-end for the user interface
- Back-end for the calculus stuff

Advantage
- Modularity (components oriented, user interface separated)
- Portability (browser)

Limits
- Wide implementation choices to do
- Re-do it all!
What’s a REST API?

REST: REpresentational State Transfer

- Based on HTTP but not a standard:
 - Respect of conventions
 - Good practices

What's a REST API?

REST: REpresentational State Transfer

1. Based on HTTP but **not** a standard:
 - Respect of conventions
 - Good practices

2. Five rules:
 - URI as resource identifier
 - HTTP verbs as operation identifier
 - HTTP response as a resource representation
 - Links as relations between resources
 - A parameter as an authentication token

What’s a REST API?

Rule 1: URI as ressource identifier

- `http://mywebsite.com/books`
What’s a REST API?

Rule 1: URI as resource identifier

- http://mywebsite.com/books/comments/87
- http://mywebsite.com/books/87/comments
Our Current Operating Ground Station (SCC)
JSatorb: Increasing Modularity, First Attempt
JSatorb: Service Oriented Architecture

Front-end

- «Web Browser»
- User Interface

Back-end

- «Component»
- Facade / Gateway

- «Component»
- Coverage
- «Component»
- Visibility
- «Component»
- Propagation
- «Component»
- TLE

Text

thibault.gateau@isae.fr

ICATT 2018 - DLR Oberpfaffenhofen
Frontend development: Theo Koudlansky
JSatorb: Typical Use Case Scenario

User through his UI → Gateway → Propagator Services

Add satellite → Ephemerids calculus request → Ephemerids response

Display ephemerids

Add a ground station → Visibility calculus request → Visibility response

Display visibility

Coverage Map Windows

Coverage calculus request → Coverage response

Display Coverage map

Display ephemerids

Ephemerids calculus request

Ephemerids response

Visibility calculus request

Visibility response

Coverage calculus request

Coverage response
1 ISAE-SUPAERO Software Legacy

2 JSatorb: a Satorb possible evolution

3 Conclusion & Questions
Nowadays academics requirements

- Open-Source
- Cross-platform
- Standardized
- Documented

Take home Message

- Still cover **teachings** requirements
- Still allow customization for **research**
- Intercompatibility - Input/Outputs Standardization
- Open-Source under MIT licence
 (https://sourceforge.isae.fr/projects/jsatorb/repository)
Thank you for your attention!

Any question?