
FREE JAVATM CNES FLIGHT DYNAMICS TOOLS

Jean-François Goester (1)

 (1) CNES, 18, Av. Edouard Belin, 31401 Toulouse Cedex 9, France, Email: jean-francois.goester@cnes.fr

ABSTRACT

For numerous years, CNES Flight Dynamics teams have

made freely available some astrodynamics tools and libraries

as MSLIB library. Nevertheless, these tools, essentially

coded in Fortran language needed different versions of

compilation depending on used platforms (Solaris, Linux,

Windows …) which didn’t ease its installation and therefore

limit their dissemination.

Some years ago, CNES astrodynamics subdirectorate made

the decision to switch to Java language in particular to insure

portability whatever the target machine was. As a

consequence, old generation astrodynamics tools were

recoded to JavaTM with a restructuration of code and

functionalities leading to an overall improvement of the

laters. Moreover, and as a consequence of the new language,

these new tools (or new versions of tools) became more easily

exportable keeping them available as freely available tools

and libraries.

This paper will describe these different tools and libraries

always linked to Flight Dynamics applications, their

interaction and dependency as well as their dissemination

mode (open source, freeware). Initially we will describe low-

level libraries as PATRIUS uniquely devoted to Flight

dynamics aspects and GENIUS for scientific GUI

development. Secondly we will also present GENOPUS

library which is based on both previous ones and allows

providing “intelligent” widgets as the one used for defining

orbit parameters. Then, we will present some tools based on

these building blocks as PSIMU (for any kind of trajectory

extrapolation around Earth) or MIPELEC (optimization of

low thrust propulsion). We will also give as example, tools

used in operational contexts as ELECTRA. To finish, means

to get and use these tools will be described via the CNES Web

site, their licenses, Wikis (including tutorials and Javadoc) or

even training course.

1. THE OLD SOFTWARE SUIT

From the very beginning, CNES needed to develop and use

Flight Dynamics software both for studies and analysis but

also for operational applications. Naturally, the need to build

these tools on a common reliable basis appeared as necessary

since the very beginning. Thus, in the 70’s and the 80’s, first

basic libraries as the famous MSLIB appeared. The common

used language was of course FORTRAN (FORmula

TRANslator) which was actually a good choice at that time.

Later in the 90’s some upgrades of these tools in FORTRAN

90/95 lead to the apparition of intermediate layers allowing

to take advantage of this more structured language. All these

libraries and tools were grouped inside BIBMS.

Moreover, always in the 90’s, the need of using such tools via

a Graphical User Interface appeared more and more

mandatory. In fact, it was already done for operational

contexts using the MERCATOR environment allowing to do

dozens of Geostationary LEOP. But such operational

environment was not really appropriate for studies or expert

software. So, some internal initiatives lead to new layers

included in PIMS software:

 MADONA: to define a standard for ASCII files

structure

 GENESIS/DIAMS: to be able to develop GUI

 XTRACE: to plot data

These three connected layers permit to develop many tools

for advanced studies but also to develop new families of

operational environment for LEO orbits (FDS G2) and later

for the ATV-CC.

Figure 1: Fortran S/W suit

2. SCILAB DEVELOPMENTS

Before the decision to upgrade our old generation software

suit, some other developments began, using ScilabTM

language which is more or less equivalent as the MatlabTM

one, with the particularity of being freely available. These

developments lead to some toolboxes as CELESTLAB. We

will not describe them in this paper (cf. [1]) but the reader

shall know that these toolboxes are complementary and very

powerful for Phase 0 studies.

3. THE CHOICE OF THE JAVATM LANGUAGE

3.1. Justification

Several needs were identified in order to compare different

languages. These technical needs represent different

researched qualities of the language which can be

summarized as below:

 Technical capacity of the language: CPU time

performance, good numerical precision, robustness,

portability …

 Existence of tools: compiler, development

environment, quality checks …

 Knowledge of the language in CNES or in

contractors working for CNES; training course, …

Then, eight criterions were defined to answer to these needs:

1. Numerical performance:

- computation on doubles with a 1e-15 precision;

- respect of the numerical standards (as

IEEE_754);

- comparison functions.

2. CPU performance

3. Portability: even if, for operational purposes, this

need is not a strong one (as the kind of platform is

fixed relatively soon), for expert tools it is a real

need to avoid to take a long time for new

compilations then comparisons of different

numerical results.

4. Maintenance and development facilities:

- dynamism of the language;

- existence of development environments;

- capacity for developer to well understand it;

- documentation, wikis, …

- error management;

- compiler controls.

5. Interfaces and interoperability:

- Interface with other languages;

- Input / Output possibilities.

6. Maturity / obsolescence:

- Age of the language;

- Stabilization;

- Standardization and standard implementations;

- Variety of the compilers and associated

libraries;

- Maintainers, sellers, distributors, support …

7. Security & reliability

8. Treatments sequencing (for example for parallel

computation)

3.2. Selected languages

We focused only on compiled languages which removed

automatically other languages as Scala, Python, Perl, Ruby,

… Thus, the following languages were selected: Ada, C,

C++, Fortran (95, 2003, 2008), JavaTM.

JavaTM language appeared as the « favorite » one for several

reasons as the development environment, the user community

or its portability. Other advantages “appeared” later as the

potential of evolutivity thanks to heritage and interface

mechanisms. Of course, “favorite” did not mean the best for

each criterion but considering a global perimeter.

4. JAVATM SOFTWARE SUIT

Once decided to use the JavaTM language (2010), it remained

to re-develop our software, basically on the same architecture

as the ancient one as presented on Figure 1.

First, we had to redefine the BIBMS equivalent. We could do

it relatively “easily” thanks to the existing OREKIT (ORbits

Extrapolation KIT) open-source library ([3]) developed by

CS and based itself on another open-source library: Apache

Commons Math ([1]). This new library, called PATRIUS,

whose development started in 2011 is today considered as a

very powerful library with many features, fully tested and

validated, ready to be used in next generation FDS

development as well as in mission analysis tools and internal

studies.

Then, based on the feedback of our previous flight dynamics

suit, a dedicated library for GUI and plots has also been

developed which is called GENIUS. This graphical library is

used for expert tools developments. For operational tools,

specific graphical libraries have been developed.

Note also that the PSIMU propagator has been extracted from

PATRIUS perimeter (as it was part of BIBMS) considered

finally as an expert tool itself depending on PATRIUS.

Figure 2: Java S/W suit

5. PATRIUS

Originally PATRIUS was based on a Mathematics package

corresponding to the Apache Commons Math library ([2])

and other packages issued from OREKIT ([3]). But after

several years of evolution, it was more and more difficult to

keep such an organization as these both libraries have been

considerably changed and in parallel, more and more add-ons

were present. So, since the V4.0 version, it has been decided

to shift on a clearer organization

The main packages of PATRIUS are described on figure 3.

Figure 3: PATRIUS library features overview

It is not possible to describe all the content of such a library,

for more detail confer to ([4]), even if it not present the last

state of the library, as the latter has evolved since thanks to

user feedbacks (for vehicle characteristics or attitude laws for

example), keeping a high level of validation (comparison

with ZOOM, the CNES POD tool) that allows to be used for

the next generation of FDS.

6. GENIUS

6.1. Why GENIUS?

GUI for flight dynamics tools (or, more generally, scientific

tools) need most of the time:

 To enter numerical input data from the screen or the

keyboard;

 To read / write these data into files;

 To execute computation thanks to these data;

 To visualize results.

That is the reason why GENESIS had been developed as no

dedicated software was available (especially in the beginning

of 90’s!).

Now, and specifically in JavaTM world, several tools are

available: basic ones, as Swing, or more elaborated ones. But,

they do not include such functionalities or, if they have, it will

be partially.

So, GENIUS, is a CNES higher level layer based on Swing

(as GENESIS was based on TCL-TK), fully written in JavaTM

(no need of code generation) but allowing to create more

easily such scientific GUI with data and result visualization

widgets.

6.2. Main advantages

Besides the fact that coded in JavaTM, this product is available

for any kind of platforms owning JavaTM, GENIUS includes

some interesting advantages:

 It includes numerical widgets!

 It uses some simplified approaches, in particular

about events management (BEFORE, AFTER via

the GListener interface) and the fact that you will not

have to manage how to refresh the display as it will

be done automatically each time it is necessary (for

example, if a data was changed);

 It performs very easily conditional display;

 There are units’ management:

Figure 4: GENIUS units management

 Always, linked to numerical data inputs, it is

possible to manage interval of validity:

Figure 5: GENIUS validity controls

 Possibility of internationalization of the labels

(several languages for a single application)

 Its process management is compatible of all OS

(thanks to JavaTM).

 Another important point, not really linked to

graphical aspects, is the fact that data files read/write

mechanism is directly integrated (as it was already

the case for GENESIS): in fact, the basic idea is the

following one:

1. First, you have to write some code to display

your data

2. Then, as you need to save your data (if possible

in an easy readable format), you will need to

write another part of code.

3. Finally, as you need to read these saved data,

you will have to write a third part of code.

… and if we think about it, we will have to write

three times the same logic in three different parts of

code! Thus, GENIUS allows to write it once. And

the format of the generated files is XML (not

necessary to redefine a format as MADONA).

6.3. Some high level widgets

Some interesting high level widgets have also been added

thanks to several user feedbacks. We may identify for

example:

 GComponentList: a widget allowing to manage a list

of widgets

Figure 6: GENIUS list of widgets

 GPlotPanel: a widget allowing to get 2D plots

(thanks to the JFreeChart library) after reading data

in ASCII files or SQLite ones. It replaces XTRACE

in the old Fortran suit.

Figure 7: GENIUS plots

 Same kind of widget also exists but allowing to plot

directly ground tracks:

Figure 8: GENIUS ground tracks

 Possibility to build a “standard application GUI”

managing:

o context file loading and saving;

o computation launching;

o result files saving;

o displaying input data as well as output ones.

Most of our JavaTM expert tools uses this standard

frame as PSIMU as depicted in Figure 9. It allows to

the future users not to be lost from a tool to another

one.

Figure 9: example of GENIUS “standard application”

with PSIMU

7. GENOPUS

On one side we have a library of flight dynamics algorithms

and data structures (i.e. objects) with PATRIUS and on the

other side a GUI library specialized for scientific applications

with GENIUS. Both are useful for developing expert tools but

it seemed obvious that each of these tools would not have to

redeveloped common widgets as classically the one used to

define orbit parameters!

That is the reason why GENOPUS has been developed based

both on PATRIUS and GENIUS (in fact an equivalent library

existed in the old Fortran suit: GSLIB). GENOPUS is a

software library including widgets, fully written in JavaTM ,

by using GENIUS product and corresponding to flight

dynamics objects available via PATRIUS library. So, for

example, we could find widgets allowing to:

 Entry of a date with timescale and conversions;

 Entry for inertial and rotating frames configurations;

 Entry of orbit definition (date, frame, parameters)

and conversions;

 Entry of impulsive maneuver, continuous thrust

maneuver or a sequence of maneuvers combining

both types;

 Entry of attitude laws individually or via a sequence

of laws;

 Entry of orbital events (eclipse …);

 Entry of vehicle characteristics;

 Entry of force models (potential, atmosphere, solar

pressure radiation …);

 Many other basic widgets to define for example an

ellipsoid, a rotation or more recently ground stations

coordinates.

Thus, this library allows getting very quickly complex flight

dynamics widgets fully consistent with PATRIUS objects.

Moreover, an important point is that, for some specific

widgets as the orbit one, conversions (always based on

PATRIUS algorithms) are available.

Here, we have an example of how the user may choose

between different date formats and time scales:

Figure 10: GENOPUS date widget (format)

Figure 11: GENOPUS date widget (time scales)

On the next example, we can see the conversion from

Keplerian parameters (defined with perigee/apogee altitudes)

to Cartesian ones. Of course, it is also possible to go on with

such conversions by changing the frame.

Figure 12: GENOPUS orbit widget

Figure 13: GENOPUS orbit widget after conversion

Thus, GENOPUS includes very basic widgets (even if there

is some “intelligence” inside them) as for entering a date or a

simple rotation up to more complex widgets as for entering

orbit characteristics (as presented above), the definition of an

impulsive, a continuous thrust maneuver or a sequence of

such maneuvers, the definition of attitude laws or a sequence

of attitude laws …

At last, each widget may be initialized with a predefined

PATRIUS object as it owns a getPatrius() method allowing

to get the equivalent PATRIUS object. Thus, it is very easy

to switch between both libraries.

8. PSIMU

Originally, PSIMU in the old Fortran suit was very useful as

there were no sufficiently high level layers to propose

something to propagate trajectories. Only very basic

functions as frames or parameters conversions, numerical

integrators or forces computation were available. So, PSIMU

was there to deal with a lack of such level.

This need has been replaced in PATRIUS by the very

powerful capacity of the NumericalPropagator class.

Nevertheless, another need was to propose to users not a

solution for coding but a “on the shelf” tool with its own GUI:

it is not the problem to code in Fortran, JavaTM or Scilab if

you just want to propagate an orbit.

So, it has been decided to build a PSIMU JavaTM version, at

least with its GUI and batch version. As most of our tools are

using this kind of architecture, it was very easy to access to

the PSIMU main class and therefore use the core of PSIMU

internally in some expert tools as OSCAR/DRAGON ([5]).

So, this JavaTM version of PSIMU is a tool allowing to

propagate trajectories around the Earth (the Fortran version

was also able to propagate around Mars or Venus). These

trajectories may be:

 Elliptical ones (all kind of orbits, from LEO to GEO

passing through MEO or HEO),

 Hyperbolic ones,

 Atmospheric ones (in particular in case of debris

reentries).

Figure 14: S/W architecture between GUI/batch modes

Its initialization is made by:

 The initial orbital parameters definition (epoch,

frame, coordinates) with a great number of available

options.

 The vehicle modelling:

o Vehicle shapes (sphere, cylinder and

parallelepiped) with or without solar panels

o Dimensions or surfaces,

o Aerodynamic characteristics and/or radiative

pressure ones,

o Propulsive characteristics (engines, tanks).

 A maneuver sequence (optional) including

impulsive maneuvers and/or continuous ones.

 A sequence of attitude laws (optional); indeed, if

PSIMU does not manage 6 DDL motion, it owns as

input data, attitude laws depending on orbital events,

allowing to know at every moment the vehicle

attitude and thus, to deduce from it the forces applied

to the vehicle.

 Numerical integrator parametrization (Runge Kutta

or Dormand Price) with, for usual applications, by

default settings.

 Choice of force models within:

o Potential with several models available as the

possibility to manage degree and order of zonal

and tesseral terms

o Other bodies attraction: Moon and Sun via

analytical or numerical ephemeris,

o Atmospheric forces using different atmospheric

models and their associated settings,

o Solar radiative pressure (direct or rediffused one)

o Oceanic and terrestrial tides

Most of the widgets used for entering such data via the GUI

are of course issued from GENOPUS!

PSIMU also allows to set its output data within several tens

of variables, the output frame and, of course, the output step.

A graphical interface for plots is also integrated.

Figure 15: PSIMU plots

9. OTHER APPLICATIONS

9.1. MIPELEC

Thanks to PATRIUS, GENIUS and GENOPUS but also

sometimes PSIMU, several other expert tools have been

(re)developed in JavaTM. The first one as it did not require too

much flight dynamics properties (only Keplerian mode, no

attitude, …) was MIPELEC. This tool is may be one of the

most ancient tool to be freely delivered by CNES but only via

its source code to be recompiled sometimes with some

difficulties. So, it has been decided to propose, always freely,

a new JavaTM version with its own GUI.

Figure 16: MIPELEC input data

Figure 17: MIPELEC plots

9.2. Other maneuvers tools

Several other expert tools have been recoded in JavaTM using

these basic libraries (but not yet available outside CNES). We

can list for example:

 CRASH: a tool allowing to compute guided reentry

trajectories.

 DOORS: a tool computing deorbit scenario as well

as an estimation of the debris fallout areas. The

previous Fortran version of this tool had been used

for ATV operations.

 OSCAR / DRAGON: a set of tools to compute

phasing / rendezvous scenarii. The previous Fortran

version has been used for ATV operations and is still

used for the current GALILEO station acquisition

operations.

9.3. French Space Operation Act (FSOA) Tools

As French National Space Agency, CNES has the

responsibility to validate technically that launchers and

satellites operated by French operators respects the law. To

this purpose, and to help the operators to proof that their

mission is in agreement with the FSOA, CNES developed

efficient state-of-the-art tools for such evaluation: STELA,

DEBRISK and ELECTRA.

A specific paper is dedicated to the last two tools ([6]) and for

the first, we may refer to [7].

9.3.1.

The Semi-analytic Tool for End of Life Analysis (STELA)

reflects the standard concerning the protection of LEO and

GEO regions (lifetime and protected regions crossing of

disposal orbits) and provides the user with tools to assess

compliance with the requirements. The software allows

efficient long-term propagation of LEO, GEO, and GTO

based on a semi-analytical models and assessment of

protected regions criteria. Thus, STELA produces a report

file that summarizes the computation (spacecraft

characteristics, initial and final orbits, computation

parameters, criteria status) and optionally an ephemeris file.

STELA is probably one of the first significant tool developed

in JavaTM. That is the reason why most of its code does not

use PATRIUS and, a fortiori, GENIUS/GENOPUS libraries

(GUI is directly coded in Swing). Nevertheless, the main

algorithms, linked to its semi-analytical models for orbit

propagation have been included in PATRIUS, which permits

to use them directly for other tools.

Figure 18: STELA GUI

9.3.2.

DEBRISK evaluates the survivability of fragments from a

satellite entering the Earth’s atmosphere. This software is

available for space operators to check the compliance of their

vehicles with this technical regulation. It computes

trajectories and ablation of fragments from a space vehicle

during re-entry.

This software uses an object oriented approach: it assumes

the satellite to be a multiple interdependent objects set,

modelled by simple forms. Each object is characterized by its

geometrical shape, its size, its mass and its material.

DEBRISK provides a list of the surviving objects and their

characteristics upon ground arrival.

DEBRISK is more recent than STELA, so its JavaTM

development used very soon PATRIUS library. However, its

GUI does not use GENIUS/GENOPUS (also directly in

Swing) as these products did not exist at its creation. The

possibility to upgrade its GUI using GENIUS/GENOPUS is

under study.

Figure 19: DEBRISK GUI

9.3.3.

ELECTRA tool meets the requirement for precise

quantification of the risks involved in the launch and the re-

entry of a spacecraft. It computes the risk of making a victim

due to atmospheric reentries, with or without taking into

account protection coefficients.

Using a lot of input data as the debris characteristics

eventually provided by DEBRISK, ELECTRA can compute

the risk of making a victim in several contexts:

 RA mode: in this case the space object (satellite of

launcher part) is not controlled and it is extremely

difficult to predict the impacts location. The method

considers only the latitudes the object flies over,

meaning the risk depends on the inclination of the

orbit.

 RL mode: this context starts from the trajectory of a

launching (which is guided by definition) eventually

dispersed. The method computes the risk due to

failures occurring during this launching phase.

 RC mode: this context deals with controlled

trajectories following deorbit maneuvers and

evaluates the risk associated with maneuver failures.

 RF mode: in this case, we consider uncontrolled re-

entries but only some days before the final fallout. It

is then possible to compute the risk more precisely

than in RA mode. This mode is only available since

the V4.1 version.

Except for RA mode, numerical propagations are used with

Monte Carlo method leading to relatively important CPU

time (depending of the amount of required simulations).

Figure 20: ELECTRA Monte Carlo

It is the more ancient tool developed for FSOA as its

development undertook in 2007. At this date, it was naturally

coded in Fortran using the previous suit using BIBMS and

PIMS. But since 2015, after the internal CNES decision to

use JavaTM language, a new development started for

ELECTRA leading to new V4 versions. The next version

(V4.2) will be available at the beginning of 2019.

ELECTRA fully uses PATRIUS functionalities as well as for

the orbital or the atmospheric phase. GENIUS is also used a

lot as, may be, the ELECTRA GUI is the most complex ever

done with such a product.

Figure 21: ELECTRA main frame

Figure 22: ELECTRA display

10. DISTRIBUTION

10.1. Why?

What is the interest for the CNES for a software distribution?

Of course such a distribution deals with the CNES and

especially CNES flight dynamics outreach but some other

advantages exist:

 To be more easily adopted by our contractors and

then to get a better efficiency;

 A good mean for cooperation;

 Support to education (universities but even high

schools);

 To become a reference (for example in the FSOA

context);

 Making our tools more and more robust by

increasing the amount of users.

Anyway, it is not foreseen to distribute all our flight dynamics

tools. Particularly the operational branch may have some

distribution opportunities but not in the same context as basic

libraries or expert tools.

10.2. Which kind of distribution?

Bad license terms as the content of the distribution could

occur a brake to it:

 Free of charge or not?

 Binary or source code?

 Duration of the license?

 Possibility of further commercialization?

Some internal discussion leads towards the conclusion that,

for software candidates to an external distribution, a free of

charge position was the best solution as the choice between

binary versus source code will depend of the software

considered.

10.2.1. Basic libraries

Such libraries are only useful for developers. That is the

reason why it has been decided to deliver source code and to

have an « Open Source » distribution to give the following

benefits:

 Possibility, for the developers to debug their

problems or to do some evolutions without the need

to immediately contact CNES;

 Best confidence in the durability of the product.

Moreover, to be consistent with other similar products and for

an easy use, it has been decided to associate an Apache 2.0

license.

Note: CELESTLAB (written in SCILAB) is already with such

kind of distribution but directly managed in the frame of

SCILAB toolboxes as an associated product.

10.2.2. Expert Tools

For expert tools, the philosophy is a bit different as these tools

applied not to developers but to “simple” users who, most of

the time, need to get results of a computation without need of

knowing with which language the tool has been written. That

is the reason why the distribution mode will be as executables

including their own GUI.

The kind of license is based on the one being created when

STELA was firstly distributed.

10.2.3. Specific case of FSOA tools

STELA has not a specific kind of distribution as it can be used

of course in the frame of FSOA studies but also as an orbital

propagator, all kind of data useful for orbit determination and

plenty other needs.

On the contrary, DEBRISK and ELECTRA has been

considered as more sensitive tools and their distributions are,

up to now, restricted to such a FSOA use. Internal CNES

discussions could enlarge the distribution.

10.3. Web site

Rather than to create a specific site to be able to download

these products, it has been decided do use a preexisting site

where other CNES tools were already distributed as MSLIB

(https://logiciels.cnes.fr/en). As this site was not a model of

modernity and usability, some evolutions have been set up as

for example the possibility to categorize the tools available

(not only a single alphabetical list as before) or the fact that

the description spreads on different tabs rather than on a

single page.

Thus, the flight dynamics tools are listed in a single category

except for FSOA tools that are placed in a specific one.

Up to now, the available Flight Dynamics tools, including

old Fortran MSLIB library and tools associated with SCILAB

developments are the following ones:

 PATRIUS

 PATRIUS_DATASET (a set of data necessary for

using some PATRIUS functionalities (for example

UTC-TAI gaps)

 GENIUS

 GENOPUS

 PSIMU

 MIPELEC

 CELESTLAB

 CELESTLABX

 MSLIB

 VTS (a graphical 2D/3D visualization tool)

Figure 23: Flight Dynamics tools list

To this list, we can add the three FSOA tools:

 ELECTRA

 STELA

 DEBRISK

https://logiciels.cnes.fr/en

Figure 24: FSOA tools list

10.4. Wikis

In parallel to this web site, some Wikis, based on MediaWiki

(https://www.mediawiki.org) format, have been created to

help for using some of these tools. Of course, these Wikis are

accessible by everybody. Up to now, the available Wikis are

dedicated to:

 GENIUS (http://genius.cnes.fr)

 GENOPUS (http://genopus.cnes.fr)

 PATRIUS (http://patrius.cnes.fr)

 PSIMU (http://psimu.cnes.fr)

10.5. Training courses

Via the Wikis, a lot of tutorials are available but CNES

provides some training courses for using PATRIUS and

GENIUS libraries … as well as for using the JavaTM language

for scientific tools.

11. CONCLUSION

Since 2010, most of all the developments of CNES flight

dynamics software use the JavaTM language based on basic

libraries as PATRIUS for algorithms and GENIUS for

Graphical User Interface (others use the ScilabTM language

with links between both).

Thanks to the JavaTM (and ScilabTM) portability on about all

the existing platforms and Operating System, it becomes

easier to distribute these tools outside CNES. So, it has been

decided to propose an Open Source approach using Apache

2.0 license (or equivalent for ScilabTM toolboxes) for basic

libraries and freeware conditions for higher level expert tools

as PSIMU in their binary versions including their own GUI.

These tools are downloadable via the CNES dedicated

Website (https://logiciels.cnes.fr) and some information is

available through several Wikis.

12. REFERENCES

[1] Thierry Martin, Alain Lamy, Guillaume Azema, Maria-

Luz Hernandez, “CELESTLAB: A FREE AND OPEN

SOURCE SCILAB LIBRARY FOR FLIGHT DYNAMICS”,

4th International Conference on Astrodynamics Tools and

Techniques, Madrid, Spain, 3 – 6 May 2010

[2] Apache Commons Math: The Apache Commons

Mathematics Library. Online at

http://commons.apache.org/math/ (as of 9 May 2012).

[3] Maisonobe, L. (Feb. 2011). About OREKIT. Online at

https://www.orekit.org/blog/index.php?pages/About (as of 9

May 2012).

[4] Houdroge, R., Claude, D., Anton, J., Sabatini, T.,

Cardoso, P., Mercadier, G., Trapier, T., Tanguy, Y. “THE

SIRIUS FLIGHT DYNAMICS LIBRARY FOR THE NEXT 25

YEARS”, 5th International Conference on Astrodynamics

Tools and Techniques, The Netherlands, 29 may – 1 June

2012.

[5] Ivan Sumelzo Martinez, Pierre Labourdette

“JOSCAR/JDRAGON: TOOLS FOR MANEUVER

STRATEGY COMPUTATION DEVELOPED IN JAVA AND

USING PATRIUS” 6th International Conference on

Astrodynamics Tools and Techniques, Darmstadt, Germany,

14-17 March 2016

[6] A. Bellucci, J.F. Goester, P.Omaly, S. Christy, F. Delmas,

“RISK ANALYSIS BETWEEN AIRCRAFT AND SPACE

DEBRIS DURING ATMOSPHERIC RE-ENTRY” 7th

International Conference on Astrodynamics Tools and

Techniques, Oberpfaffenhofen, Germany, 6-9 November

2018

[7] Fraysse, H., Morand, V., Le Fevre, C., Cauhert, A., Lamy,

A., Mercier, P., Dental, C., Deleflie, F., STELA a Tool for

Long-Term Orbit Propagation, Proceedings of the 5th

International Conference on Astrodynamics Tools and

Techniques, 29 May-1 June 2012, ESA/ESTEC, Netherlands.

13. ACRONYMS

ATV-CC: Automated Transfer Vehicle Control Center

CNES: Centre National d’Etudes Spatiales

FDS: Flight Dynamics System

FSOA: French Space Operation Act (LOS in French)

GENIUS: GENeration of Interface for Users of Scientific

S/W.

GEO: Geostationary Earth Orbit

GUI: Graphical User Interface

LEO: Low Earth Orbit

LEOP: Launch Early Orbit Phase

POD: Precise orbit Determination

https://www.mediawiki.org/
http://genius.cnes.fr/
http://genopus.cnes.fr/
http://patrius.cnes.fr/
http://psimu.cnes.fr/

