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ABSTRACT

Future concepts and key technologies for reusable launch
vehicles are currently investigated by the DLR project AKIRA,
focusing on vertical takeoff and horizontal landing (VTHL),
as well as horizontal takeoff and horizontal landing (HTHL)
concepts.

Dedicated developments of multidisciplinary frameworks
for launch vehicle modeling and preliminary design optimi-
zation have been presented in the relevant literature. These
activities are often performed by several independent and
discipline-specific tools; such an approach can only account
for limited interactions of the involved disciplines with the
overall system dynamics.

Therefore, it is the objective of this paper to focus on
a multidisciplinary launch vehicle dynamics modeling, gui-
dance, and control framework to support reusable launch
vehicle design activities at DLR while taking into account the
highly interconnected disciplines involved and the changing
environmental conditions. The modeling framework is based
on the object-oriented, multidisciplinary, and equation-based
modeling language MODELICA. Dedicated 3-DOF and 6-
DOF model implementations, covering the kinematics and
dynamics formulation, environmental effects, aerodynamics,
and propulsion models are presented.

Within this framework, a method to obtain a direct con-
nection between 3-DOF and 6-DOF models is shown. This
is done by considering results from the trajectory optimiza-
tion package ‘trajOpt’ in combination with nonlinear 6-DOF
inverse models obtained automatically by MODELICA. An-
gular rates and the resulting moments can be obtained by this
intermediate 6-DOF modeling approach for subsequent con-
trollability studies.

We discuss some of these benefits in terms on nonlinear
flight control simulations for an HTHL reusable launch vehi-
cle concept.

Index Terms— Launch Vehicle Modeling, Object-Oriented
Modeling, Nonlinear Inverse Models, Flight Dynamics

1. INTRODUCTION

Future launch vehicle concepts and technologies for expen-
dable and reusable launch vehicles are currently investigated
by the DLR research project AKIRA, focusing on vertical ta-
keoff and horizontal landing (VTHL), as well as horizontal
takeoff and horizontal landing (HTHL) launch vehicle con-
cepts [1, 2, 3, 4, 5].

Within this context, preliminary design studies have to be
performed, where the overall launch vehicle system dynamics
have to be investigated using a multibody approach for sub-
sequent controllability and trimmability studies. The mul-
tibody modeling of reusable launch vehicles can be a chal-
lenging task due to multiple disciplines involved in the mo-
deling and simulation process, such as environment, aerodyn-
amics, propulsion, structural dynamics, separation dynamics,
and Guidance, Navigation and Control (GNC). Depending on
the launch vehicle design and its mission requirements, the
launch vehicle configuration can experience significant chan-
ges in its system structure and parameter database which has
to be accounted for within a modeling framework.

Dedicated developments of multidisciplinary frameworks
for launch vehicle modeling and preliminary design optimi-
zation have been presented for instance in [6, 7, 8, 9, 10, 11].
Moreover, it is common that each discipline-specific analysis
requires different types of models with appropriate level of
detail and that these activities are often performed by several
independent, discipline-specific tools. Depending on such an
approach, the consistency between adequate models for each
simulation workflow can be difficult to ensure and only a li-
mited amount of interactions of the involved disciplines with
the overall system dynamics can be accounted for.

For this purpose, a multidisciplinary launch vehicle dyna-
mics modeling, guidance, and control framework has been de-
veloped at the German Aerospace Center (DLR), Institute of
System Dynamics and Control in support of the above menti-
oned reusable launch vehicle design activities. We do this by
taking into account highly interconnected disciplines, chan-
ging environmental conditions and the variable structure of
the system due to time- and state-dependent separation events
or engine cutoffs [12, 13, 14, 15, 16].



Dedicated three and six degrees of freedom (DOF) mo-
dels for specific analyses are presented based on the object-
oriented, equation-based and acausal modeling language MO-
DELICA, including the kinematics and dynamics formulation,
environmental effects, aerodynamics, and propulsion dyna-
mics. These models support different levels of detail and
can then be used consistently for multi-objective and multi-
phase trajectory optimization with Functional Mock-up Units
(FMU) [15, 17], for system dynamics analyses using nonli-
near inverse models [18, 19], and for G&C design based on
Nonlinear Dynamic Inversion (NDI) [20, 21, 22, 23].

A brief overview on the main modeling methods is gi-
ven in Section 2. This includes an introduction into the mo-
deling language MODELICA, the implementation of the mul-
tibody dynamics, and an overview on the nonlinear inverse
modeling supported by MODELICA. In Section 3, the launch
vehicle modeling framework including the implementation of
multidisciplinary components is introduced. The consistent
implementation of these components for different applicati-
ons, such as trajectory optimization and nonlinear inverse mo-
deling, is described in Section 4. Some of the capabilities of
the modeling framework are demonstrated and discussed in
Section 5 for a delta-winged reusable launch vehicle concept.
The main benefits of the modeling framework are summari-
zed in Section 6.

2. METHODS

The launch vehicle dynamics modeling, guidance, and control
framework is based on the modeling language MODELICA.
This modeling language and its advantages in comparison to
other modeling tools will be introduced in the following secti-
ons. In particular, the modeling of multibody systems, as well
as the nonlinear inverse modeling approach will be presented.

2.1. MODELICA

The object-oriented modeling language MODELICA, introdu-
ced in [24, 25, 26, 27], is well suited to model complex physi-
cal systems containing, e.g., mechanical, electrical, thermal,
control, or process-oriented subsystems and components from
multiple physical domains.

In MODELICA, models of complex physical systems are
described using differential, algebraic, and discrete equations
which are mapped into a mathematical description form cal-
led hybrid Differential Algebraic Equations (DAE). A DAE
system in its implicit form can be expressed as:

FFF
(

ẋxx(t),xxx(t),yyy(t), t
)
= 0, (1)

where ẋxx contains the state derivatives, xxx the state variables,
yyy the pure algebraic variables, and t the time variable [28].
These high-index systems of DAE are reduced to lower index
using the Pantelides algorithm which identifies the equations
to be differentiated and then solved directly by a DAE solver

like the differential and algebraic system solver DASSL in-
cluded in the MODELICA-based simulation environment DY-
MOLA [29]. Alternatively, the system can be mapped to an
explicit Ordinary Differential Equation (ODE) form by reor-
dering the derivatives and the algebraic variables, and then
subsequently solved numerically by a dedicated ODE solver.

MODELICA is a declarative language, meaning that de-
clarations are given through equations in contrast to impera-
tive languages, in which statements and algorithms are as-
signed in explicit steps [13, 15, 23, 27]. These declarations
most often describe the model’s first-principles without expli-
cit indication on how to compute them; therefore, MODELICA
is an equation-based modeling language. These declarative
models can then be translated into efficient code allowing for
acausal modeling capabilities that give better reuse of classes
since equations do not specify a certain data flow direction,
which is one of the most important features of the language.

MODELICA has multi-domain modeling capability, mea-
ning that model components corresponding to physical ob-
jects from several different domains can be described and
connected to each other. The interaction between components
is defined by means of physical ports, called connectors, and
the interconnection is given accordingly to their physical me-
aning. This physical meaning is typically represented by flow
variables, which describe quantities whose values add up to
zero in a node connection (Kirchhoff’s first rule), and by non-
flow (or potential) variables, which in contrast remain equal
(Kirchhoff’s second rule).

Most important for the generation of a modeling frame-
work is, that MODELICA is designed to be an object-oriented
language. This helps to model complex systems and their
physical meaning within an object-oriented structure, facilita-
ting the modularization and reuse of component models and
the evolution of the structure itself. Object-orientation is pri-
marily used as a structuring concept which exploits the decla-
rative feature of the language, the adaptiveness of models to
changes within the framework structure, as well as the reusa-
bility of models in a modular fashion. Thus, the language
is ideally suited as an architectural description language for
complex physical systems.

The Modelica Association provides the Modelica Stan-
dard Library (MSL) [28] containing multi-physical models
including multibody components which can be used as base
components for individual modeling frameworks.

2.2. Multibody Modeling

Typically, a multibody system is described by a collection of
so-called bodies and their interactions. Generic body compo-
nents, as defined in the Modelica Standard Library, are repre-
sented by their physical properties such as constant mass and
moments of inertia, as well as some geometric quantities like
position of center of mass, shape, and density, for instance.

The translational and rotational dynamics of each body



are described depending on the physical nature of the system
and their components. For rigid body models, the Newton-
Euler equations of motion with respect to the body fixed coor-
dinate system (B) are implemented by default:[

mIII3 000
000 IIIB

][
aaaB
ααα

]
+

[
000

ωωω× IIIBωωω

]
=

[
FFF
MMM

]
, (2)

where FFF is the external force vector resolved in the body fixed
coordinate system, m is the constant mass, aaaB the translational
acceleration, MMM the external moment vector, IIIB the constant
inertia matrix with respect to the center of mass of the body,
ωωω the angular velocity and ααα the angular acceleration vector,
respectively. It is important to notice, that the Equation (2)
is based on a point mass which coincides with the center of
mass of the multibody, such that any term related to a certain
mass distribution with a distance from the center of mass are
set to zero.

In MODELICA, the physical coupling between multibody
components is described by rigid connections between bo-
dies, defined by frames and joints. A frame connector is assig-
ned to each multibody and contains information about its re-
sulting cut-force fff and cut-torque ttt as flow variables, as well
as its position rrr0 and orientation RRR defined by a transforma-
tion matrix together with the corresponding angular velocity
vector as non-flow variables [28], respectively. These varia-
bles are defined with respect to the global (world) coordinate
system given in Cartesian coordinates as shown in Figure 1
and can be resolved in problem-specific coordinate systems
for better usability or numerical efficiency. Joints are used to
model motion constraints between multibody frames, where
specific elements can be implemented to describe physical
connections via automatic computation of joint loads, or to
describe stage separation dynamics where some or all con-
straints are released, for instance. These aspects are discussed
in more detail in [12, 13, 16].

2.3. Nonlinear Inverse Modeling

Forces and torques that are applied directly on a rigid body
using the frame connector result in a change of its kinematic
states. These kinematic states can be obtained as outputs of
the overall system dynamics by dedicated measurements. In
MODELICA, such a nonlinear direct model can be transfor-
med automatically into a nonlinear inverse model by simply
exchanging the meaning of the input and output variables gi-
ven in Equation 1 as shown in Figure 2 and under some as-
sumptions, described in detail below.

In the direct multibody modeling approach, a torque τττ is
applied to the multibody frame in order to exert a rotation with
respect to the center of mass. The kinematic states including
the attitude σσσ and the angular velocity ωωω of the system are
then calculated by solving the corresponding DAE. However,
if we are interested in the torque required for a given refe-
rence angular velocity ωωωre f , the nonlinear inverse modeling
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Fig. 1: Schematic Representation of Frames in MODELICA.
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Fig. 2: Schematic Overview of Direct and Inverse Models.

approach can be used. For that, the reference angular velo-
city ωωωre f has to be provided as an input to the system and
the required or resulting torque τττres is then internally derived
automatically from the inverse multibody model.

Nonlinear inverse modeling can only be performed under
certain assumptions. First of all, the direct multibody model
itself must be invertible. Time delays and hard nonlinearities
such as backlash, friction, or hysteresis may render a direct
multibody model non-invertible, and these must be approxi-
mated or avoided for inverse modeling [18, 19]. Moreover, an
inverse model must be a unique solution and it must be stable.
Furthermore, the inverse model has to be continuously diffe-
rentiable up to the necessary order of differentiation. If the
inverse model is non-differentiable, for example due to exter-
nally provided tabular data, the required derivatives have to be
provided either manually, approximated, or obtained analyti-
cally instead of using MODELICA’s automatic symbolic dif-
ferentiation [19]. Additionally, high-order filters can be used
to smooth the inputs and to obtain the required derivatives
provided by the filter states as described in [18].

Nonlinear inverse models have been applied for model-
based control of industrial robots, aircraft, and satellites,
where the inversion including flexible multibody dynamics
are also considered [18, 19]. In this paper, nonlinear inverse
models are used in the context of launch vehicle preliminary
design studies and in terms of obtaining the required mo-
ments to follow a given reference trajectory. This step helps
to subsequently evaluate the capabilities of the launch vehicle
in terms of controllability, actuator sizing, and ∆V budgeting
(e.g. for Reaction Control Systems).



3. MODELING

When modeling an expendable or reusable launch vehicle sy-
stem, several disciplines as well as design and mission as-
pects must be considered. Furthermore, launch vehicle mo-
dels must provide the capabilities to fully operate under at-
mospheric and deep space conditions, respectively. For that
reason, these aspects must be covered by a consistent and
highly accurate definition of environmental conditions.

In addition to environmental conditions, the chosen struc-
tural design of the launch vehicle system can have significant
influence in the modeling approach. For instance, stability
and control aspects depend significantly on the chosen struc-
tural design. Typically, for conventional launch vehicles the
control elements are limited to Thrust Vector Control (TVC)
and Reaction Control Systems (RCS), whereas for winged
launch vehicle systems aerodynamic control surfaces have to
be also included into the modeling framework.

Based on requirements and constraints of the performed
studies, like trajectory optimization, controllability studies, as
well as G&C design, the launch vehicle modeling framework
presented schematically for a 3-DOF model in Figure 3(a)
and a 6-DOF model in Figure 3(b) has been developed using
MODELICA. The following modularized, replaceable, exten-
dable and object-oriented components shown in Figure 3 are
used representing the main architecture of the launch vehicle
modeling framework:

• world: The world component provides the global coor-
dinate system and functions to calculate the gravity
acceleration of a body for a given inertial position.

• geosphere: Within this component atmospheric para-
meters depending on the chosen atmospheric models
for a given inertial position can be determined.

• current: In this component, wind forces are calculated
with respect to the body frame based on wind profiles
depending on the altitude of the body as well as atmos-
pheric parameters.

• stage: The stage component is used for the calculation
of the main stage dynamics due to gravity accelera-
tion as provided by the world component. Whenever
necessary, variable mass dynamics are considered by
launcher-specific variable mass models as described by
Eke [30].

• kinematics: Kinematic variables, states and transfor-
mation matrices are calculated in the kinematics com-
ponent. This includes the definition of frames for any
attached components, such as aerodynamics or engines.

• aerodynamics: This component provides aerodynamic
forces and moments with respect to the kinematic or
body fixed frame of the launch vehicle system.

µ

α

β

cs

R

(a) Schematic Representation of a 3-DOF Model.
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(b) Schematic Representation of a 6-DOF Model.

Fig. 3: Overview of Launch Vehicle Models (3-/6-DOF).

• engines: Within this component, thrust forces are cal-
culated and applied to the body frame with respect to its
orientation or at a derived coordinate system for TVC.

• userPar: This component provides a parameter inter-
face for consistent 3-DOF and extended 6-DOF model
parameters. For instance, multi-dimensional tabular da-
tasets for the interpolation of aerodynamic coefficients
can be considered additionally.

• userOutput: This component provides launch vehicle
specific parameters, which can be obtained by measu-
rements and used as outputs for attached tools, like the
trajectory optimization package ‘trajOpt’.

Except for the environment components world and geo-
sphere, and the parameter datasets userPar and userOutput,
all model components are connected with each other through
‘acausal’ physical frames, capitalizing on this modeling fea-
ture of MODELICA.



Furthermore, all model components are declared as repla-
ceable models using MODELICA’s object-oriented architec-
ture. In that sense, the 3-DOF models can be replaced by
6-DOF models, according to the related application or to par-
ticular requirements. This is possible due to the fact that all
models supporting several levels of detail have the same inter-
faces and identical parameter structure. Therefore, they can
be replaced by corresponding models with different level of
detail, assuming the interface definitions remain unchanged
during the transition.

As shown in Figure 3, the connection interfaces between
the frames of each model component remain unchanged for
the 3-DOF and the 6-DOF cases. Only external inputs, such
as aerodynamic angles {µ,α,β} or torques τττ and aerodyn-
amic control surface deflections δδδ , maintain a different con-
nection with the corresponding model components. If other
launch vehicle or analysis specific inputs are necessary, these
can be extended accordingly. This leads to a highly modular,
numerically accurate, flexible, and most importantly consis-
tent model behavior.

3.1. Environment

All components related to environmental conditions such as
world, geosphere and current are derived from the DLR Envi-
ronment Library [14] and are defined as replaceable models.

As described in [15], the global and inertial coordinate
system Earth Centered Inertial (ECI) denoted with I and the
rotating Earth Centered Earth Fixed (ECEF) coordinate sy-
stem denoted with E are provided by the world component.
The ECEF coordinate system is derived from the ECI coordi-
nate system by using the Earth’s angular velocity ωE , and the
Julian Date to determine the Earth’s current rotation angle αE
at a certain initialization time.

The DLR Environment Library allows for the modeling of
spherical or ellipsoid planet shapes. Depending on the chosen
planet shape, the position vector of the launch vehicle with
respect to the center of the global coordinate system ECI can
be significantly different for latitude, longitude and altitude
formulations. These changes have to be considered not only
in the calculation of the kinematic states of a launch vehicle,
but also for the calculation of the gravity acceleration vector,
the altitude-dependent atmospheric parameters, and most im-
portantly, for the calculation of the orientation of the launch
vehicle itself.

For example, if the planet is modeled as an ellipsoid, the
altitude above the surface is determined by transforming the
inertial position of the launch vehicle to its geodetic latitude
λ ∗, longitude φ , and geodetic altitude h∗ representation, using
the following equation as defined by the World Geodetic Sy-
stem 1984 (WGS’84) [31]:

rrr∗E =

 (N +h∗) cosλ ∗ cosφ

(N +h∗) cosλ ∗ sinφ

(N(1+ e2)+h∗) sinλ ∗

 . (3)

In this case, the reference position rrr∗E of the launch vehicle
with respect to the ECEF coordinate system is calculated,
where N represents the prime vertical radius of curvature and
e the eccentricity of the planet’s ellipse. Additionally, a more
accurate altitude formulation considering the geoid undula-
tion of the Earth based on the EGM geoid can be used. On
the other hand, if the planet is assumed to be spherical, the
following equation is used:

rrrE =

 (RE +h)cosλ cosφ

(RE +h)cosλ sinφ

(RE +h)sinλ

 , (4)

where RE is the Earth’s mean radius as defined in WGS’84, h
the geocentric altitude and λ the geocentric latitude.

Depending on the required accuracy, the gravity accelera-
tion can be calculated assuming either a point gravity formu-
lation, or applying more accurate gravity models such as the
GPS-based gravitational models given in the down-direction
of the North-East-Down coordinate system or the Earth Gra-
vitational Model 1996 (EGM96). However, it is important to
use the appropriate definition of geodetic and geocentric para-
meters for the computation of the gravity acceleration vector
to avoid significant deviations between trajectories [32].

For the calculation of atmospheric parameters, the geos-
phere component is used, providing several planet-dependent
atmospheric models, like the International Standard Atmos-
phere (ISA) or the NRL-MSISE-00 model based on experi-
mental data. The geosphere model supplies (amongst others)
the absolute pressure p, absolute temperature T , atmospheric
density ρ and the corresponding speed of sound a from which
the Mach number of the launch vehicle can be extracted using
the current relative velocity of the vehicle.

The global wind vector as provided by the geosphere com-
ponent, is computed by using a logarithmic boundary layer
approach based on the current inertial position of each vehi-
cle. Alternatively, the global wind vector can be substituted
with vehicle-specific local wind profiles provided by the cur-
rent component. The wind velocity calculated in this com-
ponent is based on the North-East-Down coordinate system
and resolved in the vehicle’s body fixed coordinate system.
The wind effects as described in [14] are especially important
for 6-DOF launch vehicle models, since they are used for the
calculation of the effective aerodynamic angles as well as the
wind force WWW provided by the following equation:

WWW =
1
2

ρSre f vvv2
W , (5)

where ρ is the atmospheric density provided by the geosphere
component, Sre f is the aerodynamic reference area and vvvW is
the wind velocity vector resolved in the body fixed coordi-
nate system. Furthermore, the current component considers
turbulence models such as the Dryden Wind Turbulence Mo-
del [33], accurate wind data based on experiments or common
wind profiles superposed with white noise.



3.2. Kinematics & Transformations

Kinematic dependencies between flight coordinate systems
used for launch vehicles are schematically shown in Figure 4.
In general, the launch vehicle modeling framework has to
provide functions and methods to represent the basic depen-
dencies between these coordinate systems, especially with re-
spect to the definition of appropriate model states.

The North-East-Down coordinate system, denoted as N,
can be derived from the inertial coordinate system ECI by
using the Earth’s rotation angle αE and appropriate geodetic
or geocentric latitude, longitude, and altitude formulation, as
described by the transformation matrices TTT EI and TTT NE :

TTT EI =

 cosαE sinαE 0
−sinαE cosαE 0

0 0 1

, (6a)

TTT NE =

 −sinλ cosφ −sinλ sinφ cosλ

−sinφ cosφ 0
−cosλ cosφ −cosλ sinφ −sinλ

. (6b)

From this local horizontal and body centered coordinate sy-
stem, the kinematic coordinate system, denoted as K, can be
calculated using the flight path angle γ and the flight path azi-
muth angle χ in correlation with the relative velocity V of the
launch vehicle by using the transformation matrix TTT KN :

TTT KN =

 cosγ cos χ cosγ sin χ −sinγ

−sin χ cos χ 0
sinγ cos χ sinγ sin χ cosγ

 . (7)

In the next step, the launch vehicle is rotated around its
longitudinal axis using the aerodynamic bank angle µ . This
new coordinate system is prescribed as the intermediate kine-
matic coordinate system and denoted as K̄. Subsequently, the
transformation into the body fixed coordinate system B can
be performed using the aerodynamic angle of attack α and
the aerodynamic sideslip angle β . The corresponding trans-
formation matrices are given as:

TTT K̄K =

 1 0 0
0 cos µ sin µ

0 −sin µ cos µ

, (8a)

TTT BK̄ =

 cosα cosβ −cosα sinβ −sinα

sinβ cosβ 0
sinα cosβ −sinα sinβ cosα

. (8b)

For general 3-DOF models, these transformation matrices
are sufficient for defining the overall launch vehicle orienta-
tion. The flight path parameters are directly derived from the
velocity vector which describe the relationship between the
North-East-Down coordinate system and the kinematic coor-
dinate system. The aerodynamic angles {µ,β ,α} are retrie-
ved directly from the trajectory optimization results, where

North-East-Down (N)
Coordinate System

Kinematic (K)
Coordinate System

Kinematic∗ (K̄)
Coordinate System

Body Fixed (B)
Coordinate System

Stability (S)
Coordinate System

Wind (W)
Coordinate System

χ,γ

µµµ

βββ ,ααα

Ψ,Θ,Φ

ααα∗

βββ
∗

Fig. 4: Overview of Flight Coordinate Systems.

they are defined as the control inputs of the launch vehicle
system. For instance, the thrust direction can then be defined
with respect to the body fixed coordinate system.

The orientation of the launch vehicle with respect to the
North-East-Down coordinate system can then be calculated
using the Euler angle formulation as defined by the body rota-
tion angles Ψ (yaw), Θ (pitch) and Φ (roll) as defined in [34]:

TTT BN [:,1] =

 cosΨcosΘ

−cosΦsinΨ+ sinΦcosΨsinΘ

sinΦsinΨ+ cosΦcosΨsinΘ

, (9a)

TTT BN [:,2] =

 sinΨcosΘ

cosΨcosΦ+ sinΦsinΨsinΘ

−cosΨsinΦ+ cosΦsinΨsinΘ

, (9b)

TTT BN [:,3] =

 −sinΘ

sinΦcosΘ

cosΦcosΘ

. (9c)

Aerodynamic forces within 6-DOF models are typically
applied with respect to the so-called stability frame defined
by the rotation from the body fixed coordinate system using
the effective angle of attack α∗. The effective angle of at-
tack differs from the control inputs given by 3-DOF based
trajectory optimization by also considering the influence of
the wind velocity vector. This influence on the overall cal-
culation of the aerodynamic angles is covered by subtracting
the wind velocity vector vvvW present at the vehicle’s current
location resolved in the body fixed coordinate system from
the vehicle’s relative velocity vector vvvB:

vvvair = vvvB− vvvW , (10)



and by using the effective velocity vector vvvair, the effective
aerodynamic angles can be calculated as [35, 36]:

α
∗ = arctan

(
vvvair,3

vvvair,1

)
, (11a)

β
∗ = arcsin

(
vvvair,2

Vair

)
, (11b)

with Vair = |vvvair| being the effective relative speed of the
launch vehicle. Finally, by using the effective aerodynamic
angles α∗ and β ∗, the wind coordinate system based on the
effective velocity vector vvvair can be determined.

3.3. State Selection

In MODELICA, state variables are derived from equations des-
cribing the system states as discussed in [37]. These state va-
riables have to be differentiable at least once within the given
model equations. Typically, the selection of state variables for
multibody systems is done automatically by DYMOLA. For
instance, the absolute position and velocity vectors are used
as translational states, while the absolute angles and angular
velocities with respect to the inertial coordinate system are
typically used as rotational states.

However, in order to improve accuracy and user-friendli-
ness of the model, these states can be reformulated to enable
the calculation of states with respect to dedicated flight coor-
dinate systems. The DLR Environment Library [14] provides
modularized drag & drop models to enable individual state
selection depending on the specific task.

3.3.1. Translational States

For a generic point mass model, these transformations and
associated coordinate systems can be derived as follows. We
begin with the definition of the position of the launch vehicle
with respect to the inertial frame of the planet. Considering
the transformation matrix TTT EI , we transform the inertial po-
sition rrrI of the launch vehicle into its reference position rrrE
or rrr∗E , respectively. Consequently, the kinematic position sta-
tes with respect to the ECEF frame can be denoted as (shown
here for the geocentric case):

rrrG =

 λ

φ

h


G

. (12)

Denoting V as the relative velocity of the launch vehicle,
χ as the flight path azimuth angle and γ as the flight path an-
gle; we may consider the definition of the following velocity
state vectors:

vvvK =

 V
γ

χ


K

. (13)

However, for the translational state definition, the launch
vehicle modeling framework uses the relative velocity vvvN of
the point mass resolved in the North-East-Down coordinate
system instead of velocity state vector defined by flight path
parameters vvvK . The velocity state vector vvvN is given as:

vvvN =

 vnorth
veast
vdown


N

. (14)

This approach results from the constraint that conventi-
onal launch vehicles take off vertically. For vertical takeoff
and/or landing, the flight path state definition vvvK is singular,
since the flight path angle points 90◦ upwards with respect to
the North-East-Down coordinate system at a relative velocity
of 0 m/s. Using these initialization parameters, the flight path
azimuth angle χ remains undefined up until the start of the
pitch over maneuver of the launch vehicle. More importantly,
state variables have to be differentiable. The declaration of
the vector vvvK as states could lead to a potential division by
zero in the derivatives.

Therefore, the launch vehicle modeling framework uses
the relative velocity vector of the point mass with respect to
the coordinate system ECEF and transforms it into a velocity
vector vvvN . Using this method, the singularity condition at ini-
tialization of vertical takeoff launch vehicles can be avoided
and a user-friendly and easily understandable velocity repre-
sentation is obtained. The flight path parameters can then be
algorithmically calculated based on vvvN .

For a 3-DOF point mass model of a launch vehicle, we
consider only the translational degrees of freedom, where the
rotational degrees of freedom – in particular prescribed by the
orientation object RRR – have to be constrained since multibody
models within MODELICA are represented by 6-DOF models
by default. The reduction from a 6-DOF to a 3-DOF model
can be performed utilizing state constraint models provided
by the DLR Environment Library. This is accomplished, by
explicitly setting the angular velocity to zero and creating new
unknown variables defined by a default orientation quaternion
QQQ. The model then interrupts the usual flow of the calcula-
tion – conceptually a double integration, first from torques to
rates and then to attitude angles, as described in [14]. Con-
sequently, any rotational movement of the point mass due to
external forces is imposed immediately to the body dynamics
without considering the influence of the moments of inertia,
external torques, or changing angular velocities and accelera-
tions.

3.3.2. Rotational States

In addition to the previously shown translational states, ro-
tational states can be defined by models provided in the DLR
Environment Library. For the attitude states σσσB, we use Euler
angles. Basically, we obtain the kinematic states by applica-
tion of a chain of transformations from the North-East-Down



coordinate system to the body fixed coordinate system:

σσσB =

 Φ

Θ

Ψ


B

. (15)

Obviously, in the 6-DOF case, special care has to be taken
in terms of singularities occurring at θ = 90◦, which cannot
be avoided in the same way as described for the flight path
parameters. For this reason, the quaternion approach can be
preferable if the numerical integration can be guaranteed to
be accurate using higher-order integration methods. The re-
lationship between the attitude kinematics and the quaternion
formulation is described in [34]:

qqq =±


cos Φ

2 cos Θ

2 cos Ψ

2 + sin Φ

2 sin Θ

2 sin Ψ

2

sin Φ

2 cos Θ

2 cos Ψ

2 − cos Φ

2 sin Θ

2 sin Ψ

2

cos Φ

2 sin Θ

2 cos Ψ

2 + sin Φ

2 cos Θ

2 sin Ψ

2

cos Φ

2 cos Θ

2 sin Ψ

2 − sin Φ

2 sin Θ

2 cos Ψ

2

 , (16)

where qqq = [q0,qx,qy,qz]
T is the Euler-Rodrigues quaternion,

relating its four elements to the Euler angles, and which re-
quires the quaternion qqq to be a unit quaternion as defined by

q2
0 +q2

x +q2
y +q2

z = 1. (17)

Using the quaternion qqq as rotational states, the singularity can
be avoided and the Euler angles can then be retrieved algo-
rithmically as described in [34] by

σσσB =


atan2

(
2(q0qx +qyqz),(q2

0 +q2
z −q2

xq2
y)
)

arcsin
(

2(q0qy−qxqz)
)

atan2
(

2(q0qz +qxqy),(q2
0 +q2

x−q2
yq2

z )
)
 . (18)

Since the reusable launch vehicle presented in Section 5 is
mainly analyzed in design regimes where the Euler angles are
not expected to be singular, the quaternion modeling approach
will be avoided and is therefore out of scope of this paper.

Complementing the attitude states, the angular velocity
state vector is defined using the angular rates ωωωB resolved in
the body fixed coordinate system (B):

ωωωB =

 p
q
r


B

. (19)

The kinematic relationship between the angular velocity vec-
tor ωωωB and the Euler angle rates are automatically derived

using the kinematic equations defined in [34, 38]:

ωωωB =

 Φ̇

0
0

+TTT Φ


 0

Θ̇

0

+TTT Θ

 0
0
Ψ̇




=

 1 0 −sinΘ

0 cosΦ sinΦcosΘ

0 −sinΦ cosΦcosΘ


 Φ̇

Θ̇

Ψ̇

 . (20)

Alternatively, the reference angular velocity ωωωBBB can be obtai-
ned by resolving the derivatives of the aerodynamic angles
and flight path parameters with respect to the body fixed coor-
dinate system, following [22] for a flat Earth approach:

ωωωBBB =

 cosα cosβ 0 sinα

sinβ 1 0
sinα cosβ 0 −cosα


 µ̇

α̇

β̇


+TTT BK̄TTT K̄K

 −χ̇ sinγ

γ̇

χ̇ cosγ

 (21)

In particular, the launch vehicle modeling framework can ad-
ditionally consider the influence of a rotating spherical or el-
lipsoid Earth. The cross-couplings between translational and
rotational degrees of freedom are contained in the derivatives
of the flight path parameters.

3.4. Dynamics

For modeling of variable mass systems, the standard Newton-
Euler equations of motion (2) are augmented with additional
terms related to and described by Kane’s equations as obtai-
ned in [30, 39]. Assuming that the particle movement and
whirling motion within the body are neglected and that the
mass distribution as well as mass loss is axis-symmetric, the
forces and moments can be extended as follows:

maaaB = FFF +FFFC2 +FFFT , (22a)
III ω̇ωω +ωωω× III ωωω = MMM+MMMC1 +MMMC2. (22b)

In these equations, the force FFFC2 is referred to as the Corio-
lis force of the particles and FFFT represents the thrust vector
which is calculated using the rate at which the relative linear
momentum is lost across the boundary of the body. Thus, the
simplified thrust vector FFFT is defined by the propellant mass
flow rate which is the derivative of the time-dependent mass
m:

FFFT =−dm
dt

vvvr , (23)

with vvvr being the relative velocity vector. Additionally, MMMC2
is related to jet damping as part of the Coriolis Effect and MMMC1



contains the contribution of the time-dependent inertia matrix
IIIB defined in:

MMMC1 =−
dIIIB

dt
ωωω . (24)

If the mass of the system remains constant, the variable mass
dynamics are neglected. Consequently, the additional forces
and moments above are set to zero, and the Newton-Euler
equations of motion for a rigid body are recovered. In general,
depending on the nature of the propulsion system and its cor-
responding burn profiles, these terms can be further simplified
and implemented in closed form as described in [13, 19, 30].

Regarding 3-DOF point mass models used for trajectory
optimization, for instance, it can be sufficient to model va-
riable mass systems based on the mass derivative as provi-
ded by the launch vehicle propulsion components’ specifica-
tions [15]. Regarding 6-DOF models, the full influence of
variable mass dynamics can be considered.

3.4.1. Translational Dynamics

For translational dynamics, the external forces consist of the
gravity vector FFFG applied on the bodies’ center of mass, the
aerodynamic forces FFFA containing drag D, side force Y , and
lift L, and the thrust FFFT :

FFF = FFFG +FFFA +FFFT . (25)

More explicitly, the forces resolved in the indicated coordi-
nate systems are defined as:

FFFG =

 mgx
mgy
mgz


N

, FFFA =

 −D
Y
−L


S

, FFFT =

 T
0
0


B

, (26)

where ggg= [gx,gy,gz]
T is the gravity acceleration vector provi-

ded by the world component. The gravity acceleration vector
is defined by the gravity models described in Section 3.1. If
the gravity acceleration is assumed to point downwards with
respect to the North-East-Down coordinate system, then the
elements in x and y direction are set to zero (see [15, 32]).

Equation (27) shows the simplified equations of motion
for the translational dynamics of a 3-DOF point mass defi-
ned for the derivatives of the flight path parameters without
considering the effect of side forces and aerodynamic sideslip
angle [40] :

V̇ =
1
m

[
T cosα−D−Gsinγ

]
, (27a)

γ̇ =
1

mV

[
(T sinα +L)cos µ−Gcosγ

]
, (27b)

χ̇ =
1

mV cosγ

[
(T sinα +L)sin µ

]
. (27c)

3.4.2. Rotational Dynamics

For rotational dynamics, we consider the aerodynamic mo-
ments MMMA applied on the bodies’ center of mass as external
moments including the roll moment l, the pitch moment m,
the yaw moment n, and additional moments MMMC provided for
example by the Reaction Control System. These generic ad-
ditional moments are applied directly to the bodies’ center
of mass. Obviously, if the thrust vector is not aligned with
the x-axis of the body fixed coordinate system (B), then the
external moments also considers a thrust moment MMMT which
corresponds to the cross product of the thrust force with its
lever arm.

MMM = MMMA +MMMC +MMMT (28)

Consequently, the simplified rotational equations of motion
are given by an extended version of [38] without considering
the Coriolis effect, as mentioned in Section 2.2:

dx ṗ =(İxzIxz− İxxIzz)p+(İzzIxz− İxzIzz)r+

(−IxxIxz + IyyIxz− IzzIxz)pq+(IyyIzz− I2
zz− I2

xz)qr+

(l +MC,x) Izz− (n+MC,z) Ixz, (29a)

dyq̇ =(m+MC,y)− İyyq+(Izz− Ixx)pr+(p2− r2)Ixz, (29b)
dxṙ =(İxxIxz− İxzIxx)p+(İxzIxz− İzzIxx)r+

(IxzIzz + IxzIxx− IyyIxz)qr+(I2
xz + I2

xx− IxxIyy)pq+

(n+MC,z) Ixx− (l +MC,x) Ixz, (29c)

with IIIB being the inertia matrix with respect to the body fixed
coordinate system assuming that Ixy = Iyz = 0 and Ixz = Izx:

IIIB =

 Ixx 0 Ixz
0 Iyy 0
Izx 0 Izz

 , (30)

and the coefficients of the determinant of the inertia matrix
defined as:

dx = IxxIzz− I2
xz, (31a)

dy = Iyy. (31b)

3.4.3. Aerodynamics

The aerodynamic forces and moments acting on a launch
vehicle during flight are considered as external forces and
moments, which are calculated using the following equati-
ons [35]:

FFFA =

 −D
Y
−L

=
1
2

ρV 2Sre f

 −cD
cY
−cL

, (32)

and

MMMA =

 l
m
n

=
1
2

ρV 2Sre f

 lre f cl
bre f cm
lre f cn

. (33)



Here, ρ is the atmospheric density provided by the geosphere
component, V the relative velocity of the vehicle, Sre f the
aerodynamic reference area, lre f the aerodynamic reference
length, and bre f the aerodynamic reference width or chord
length. If wind effects are considered, the relative velocity is
substituted by the effective relative velocity.

The aerodynamic coefficients denoted by c(·) can be cal-
culated based on either multi-dimensional look-up tables or
approximate analytical expressions. The aerodynamic coeffi-
cients used for the studies presented in this paper were provi-
ded by the Space Launcher System Analysis (SART) depart-
ment of DLR Institute of Space Systems (DLR-RY) using in-
ternal tools such as CAC [41] and HOTSOSE [42], which share
similarities to the tool DATCOM as described in [43]. These
coefficients are obtained for the overall launch vehicle opera-
ting regime depending on the current Mach number, aerody-
namic angle of attack α and the aerodynamic control surface
deflections δδδ :

δδδ =

 δa
δe
δr

 , (34)

where δa is the aileron deflection angle, δe the elevator de-
flection angle, and δr the rudder deflection angle.

Usually, the full aerodynamic coefficient matrix covering
all dependencies between the aerodynamic angles, angular
velocities and aerodynamic control surface deflections should
be provided for accurate 6-DOF analyses. However, in preli-
minary design studies, this is not possible due to limitations
of the tools used or simplifying assumptions, so that the avai-
lable coefficient matrix in this paper reduces to:

cccA =



cD
cY
cL
cl
cm
cn


=



cD,α + cD,δa + cD,δe + cD,δr
cY,δr

cL,α + cL,δa + cL,δe
cl,δa

cm,α + cm,δa + cm,δe
cn,δr


, (35)

where the coefficients cD,α ,cL,α , and cm,α are given for the
whole launch vehicle and depend solely on the angle of at-
tack α and the Mach number. The other coefficients are de-
pendent on the angle of attack α , the Mach number, and the
corresponding aerodynamic control surface deflection angles.

For the winged reusable launch vehicle in Section 5 only
two types of aerodynamic control surfaces are considered:
wing flaps for pitch and roll control with a limited deflection
angle range and winglet-type fins for yaw control. Within the
launch vehicle modeling framework, the direction of these de-
flection angles are designed using common sign conventions.

Since the wing flaps are considered as ailerons and eleva-
tors simultaneously, the corresponding deflections have to be
superimposed. Thus, two additional parameters are defined,
representing the resulting deflections at the left flap δ f L and

the right flap δ f R:

δ f L = δe +δa , (36a)
δ f R = δe−δa . (36b)

For each flap position the total aerodynamic coefficients can
be retrieved separately so that the superimposed aerodynamic
coefficients can be defined using their average values:

cL =
1
2

(
cL,δ f L + cL,δ f R

)
, (37)

where the coefficients cL,δ f L and cL,δ f R are interpolated using
multi-dimensional tables considering angle of attack, Mach
number and the corresponding deflection angles.

The roll moment coefficient depending on the aileron de-
flection angles have to be calculated using the resulting lift
coefficients for each flap deflection because they cannot be
obtained directly by the available preliminary design aerody-
namic tools. Since lift coefficients are defined with respect to
the aerodynamic reference length of the vehicle, the resulting
roll moment coefficient has to be divided by the aerodynamic
reference length lre f and multiplicated with its aerodynamic
reference width bre f defined by the distance from the center
of the vehicle to the position of the flaps. The resulting equa-
tion is:

cl,δa =
1
2

bre f

lre f

(
(cL,δ f L − cL,δe)+(cL,δ f R − cL,δe)

)
. (38)

The aerodynamic forces are applied with respect to the stabi-
lity coordinate system at the center of pressure. The aerodyn-
amic moments are applied at the center of gravity of the body
with respect to the body fixed coordinate system.

4. IMPLEMENTATION

This section presents the launch vehicle modeling and simu-
lation framework. The framework itself covers several types
of modeling methods and levels of detail, in particular for
the usage within preliminary design studies of expendable or
reusable launch vehicles as shown in Figure 3.

4.1. Trajectory Optimization

The 3-DOF launch vehicle model shown in Figure 3(a) can be
translated into a so-called Functional Mock-up Unit (FMU),
which can then be imported into DLR-SR’s Trajectory Opti-
mization Package ‘trajOpt’ [15, 17, 44, 45]).

As results of the trajectory optimization, the translational
states, flight path variables and aerodynamic control para-
meters can be obtained directly. The results depend highly
on problem-specific optimization goals, requirements, and
constraints. These goals can include maximizing the pay-
load to a desired orbit or maximizing the downrange for the
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Fig. 5: Intermediate 6-DOF Modeling Approach with Nonlinear Inverse Models.

descent vehicle while minimizing accelerations and dynamic
pressure, and thus mechanical and thermal loads, for instance.

In that sense, the reference trajectory provides the gui-
dance commands in terms of position and flight path varia-
bles, that have to be tracked by the attitude control subsystem.
Some aspects related to G&C in terms of guidance command
generation and nonlinear dynamic inversion attitude control
are discussed further in [23]. This paper focuses more on an
intermediate modeling and simulation approach for actuator
budgeting and sizing within preliminary design studies, by
providing knowledge about the moments MMMB which have to
be generated in order to follow the reference attitude yyyre f .

4.2. Nonlinear Inverse Model

In preliminary design studies, control efforts are of major im-
portance for the sizing of actuators. This applies particularly
to the moments that have to be delivered by the actuators like
the Reaction Control System (RCS), Thrust Vector Control
(TVC), and the moments generated by the aerodynamic con-
trol surfaces. To study the required moments, we propose an
intermediate 6-DOF modeling approach based on nonlinear
inverse models, which uses the reference attitude commands
obtained by the trajectory optimization based on a simplified
3-DOF model considering only thrust, lift and drag forces.
From a consistent 6-DOF model a nonlinear inverse model
is derived and used to identify the moments required by the
launch vehicle system to follow the requested reference atti-
tude commands. It is important to notice, that this approach
does not consider any control allocation algorithm to assign
the moments to appropriate actuators. The simplified work-
flow for such an approach is displayed in Figure 5.

First, a trajectory optimization as described in the previ-
ous section is performed offline, resulting in optimal guidance
commands represented by the aerodynamic angle of attack
α , the sideslip angle β and the bank angle µ . These angles
are used as reference values for the subsequent computati-
ons. The thrust throttle factor cS is not included in the control
structure and thus, is provided to the 6-DOF inverse model
directly without any modification.

Subsequently, the desired angular velocity with respect
to the body fixed coordinate system is calculated using a
feedback control loop (prescribing desired dynamics) toget-
her with a kinematic inversion of Equation (21) as shown
in [22, 23]. The inverse kinematics requires the aerodynamic

angles and accelerations resulting from the nonlinear inverse
model in the feedback loop.

Finally, a low-pass second-order filter is used to smooth
the angular velocity vector provided by the inverse kinema-
tics and to obtain the derivative (angular acceleration) that is
required by the nonlinear 6-DOF inverse model. Using such
a filter implies imposing a certain cut-off frequency or band-
with which can be related to the limits of the actuators or to
some performance requirements.

5. RESULTS

The reusable launch vehicle concept AURORA shown in Fi-
gure 6 has been investigated at DLR-RY [4, 5], including ite-
rative studies regarding mass budget, propulsion, aerodyna-
mics and structural optimization. It has been further studied at
DLR-SR [15, 23] regarding trajectory optimization and G&C
design. AURORA is based on a delta-winged, two stage to or-
bit (TSTO) concept providing a high lift-to-drag ratio for ho-
rizontal takeoff and horizontal landing maneuvers (HTHL).
The proposed propellant combination is LOX/Kerosene allo-
wing placement of the kerosene tanks in the wing structure.
The upper stage (US) is located inside the main stage (MS)
and is released at separation time for further ascent to the tar-
get orbit.

The mission phases are defined in Table 1, where Phases
1 to 3 represent the ascent phase of the overall launch vehi-
cle, Phase 4 the ascent of the upper stage including payload,
and finally Phase 5 the unpowered return maneuver and sub-
sequent flight of the main stage to the landing site. Phase 5
can further be subdivided into three characteristic flight pha-
ses based on the overall control strategy:

• Phase 5a: Reaction Control System (RCS)

• Phase 5b: Combined Control (RCS + ACS)

• Phase 5c: Aerodynamic Control Surfaces (ACS)

This paper focuses mainly on Phase 5a and 5c for the sin-
gle actuator type control strategies mainly to avoid control
allocation issues not considered in the intermediate modeling
approach using nonlinear inverse models. Since the flight in
Phase 5 is completely unpowered, the mass and inertia of the
overall system are both assumed to be constant, so that the va-
riable mass dynamics as defined in the Equations 22a and 22b
can be neglected.
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Table 1: Overview of the Mission Phases of AURORA.

Phases Stages Description

Phase 1 US+MS Horizontal liftoff

Phase 2 US+MS Ascent phase (rocket engines)

Phase 3 US+MS Ballistic phase & separation

Phase 4 US Ascent of the upper stage

Phase 5 MS Unpowered flight to landing site

The mass and inertia matrix, propulsion specifications,
and the aerodynamic database used within our studies were
provided by DLR-RY using internal tools, like CAC and HOT-
SOSE. The reference trajectory was obtained by the trajectory
optimization package ‘trajOpt’ using 3-DOF models.

5.1. Discussion

In this paper, the required moments needed for subsequent
controllability studies are presented in terms of 3-DOF and
6-DOF inverse models. The intermediate modeling appro-
ach using nonlinear inverse modeling described in Section 4
is discussed to obtain the required moments for the Reaction
Control System used in Phase 5a. The same modeling appro-
ach is applied to Phase 5c in order to estimate the required
moments while assuming the aerodynamic surface deflection
angles to be zero. The internally calculated aerodynamic mo-
ments and the additional moments obtained by the nonlinear
inverse model are compared with the ones obtained by the tra-
jectory tracking using nonlinear dynamic inversion control as
described in [23]. Finally, the influence of wind effects on
the system dynamics of the winged reusable launch vehicle
AURORA are shown for Phase 5c.

Even though AURORA is located within the atmospheric
design regime at the end of Phase 5a, it is assumed for this pa-
per, that the re-entry maneuver is completely performed using
only its Reaction Control System. In Figure 7, the results for

Phase 5a obtained by the nonlinear inverse modeling appro-
ach presented in Figure 5 are shown. The reference trajec-
tory is depicted by the black dotted lines, while the output of
the nonlinear inverse model is given by the colored solid li-
nes. As can be seen for the geodetic altitude, flight path velo-
city, flight path angle, accelerations, and aerodynamic angles;
the reference trajectory can be tracked by the inverse model
accurately. The angular velocities with respect to the body
fixed coordinate system are calculated by the inverse kinema-
tics and applied directly to the nonlinear inverse model. The
state derivatives required for the internal DAE index reduction
used in the inverse model are taken from the filter.

The required moments needed to follow the reference tra-
jectory provided by the offline trajectory optimization results
are obtained by the nonlinear inverse model. These moments
can be further considered for sizing and positioning of the
Reaction Control System. For instance, the required propel-
lant mass of the Reaction Control System can be calculated,
which in turn can be used in subsequent trajectory optimiza-
tion within iterative mission analyses.

In Phase 5c, the winged launch vehicle AURORA is con-
trolled by its aerodynamic control surfaces per definition. Ho-
wever, in the nonlinear inverse modeling approach, we as-
sume that the aerodynamic control surfaces are inactive – and
thus, the aerodynamic control surface deflections remain at
zero. In that sense, we basically obtain the required moments
for the overall launch vehicle without aerodynamic control
surfaces while still considering the influence of the full 6-
DOF aerodynamic coefficient matrix.

For the control allocation approach presented in [23], the
externally required moments in Phase 5c are set to zero and
instead the aerodynamic control surface deflections are con-
trolled in order to generate the corresponding aerodynamic
moments to track the reference trajectory. In that sense, the
nonlinear inverse model provides information about the aero-
dynamic moments (δδδ = 000) and the required moments assu-
med to be provided by additional actuators. If both of these
values are superimposed as depicted by the diamond shaped
green line in Figure 8 (∆My), these values result in the aero-
dynamic moments realized by the controller in [23].

Even though the aerodynamic multi-dimensional look-up
tables might not be invertible per definition, they are still
considered in the computation of the aerodynamically requi-
red moments using the nonlinear inverse modeling approach.
Consequently, the actuators can be sized to fulfil the ad-
ditional aerodynamic moments using a reverse engineering
approach based on the aerodynamic coefficients given by the
multi-dimensional look-up tables. The resulting aerodyna-
mic deflections to generate these aerodynamic moments are
shown in Figure 8 based on [23].

Figure 9 presents the results obtained by the nonlinear in-
verse models considering wind effects. The wind velocity
is given by using standard wind profiles with respect to the
North-East-Down frame in East-West direction. Additionally,



Fig. 7: Phase 5a: Flight Parameters based on the Nonlinear Inverse Modeling Approach (inv) and its Reference Trajectory (ref).

turbulence models (e.g. white noise models) can be superim-
posed with these wind profiles. Here, turbulence effects are
neglected because the focus is set on the evaluation of wind
velocities on the overall flight system dynamics as a perturba-
tion factor.

For this purpose, the wind profiles are multiplicated by
scaling factors in the range of [−5,5] to provide a wide range
of wind profiles with changing wind directions (from East to
West, or from West to East). As shown in Figure 9, the pertur-
bation on the system caused by wind velocities, have a major
impact on the calculation of the effective aerodynamic angles.
Since the aerodynamic angles are used in the feedback control
loop based on Figure 5, and subsequently in the inverse kine-

matics, the required pitch rates differ significantly. Figure 9
shows, that wind disturbance not only influences the effective
aerodynamic angles, but also has major effect for the altitude
vs. velocity behavior of the launch vehicle, and the moments
required for tracking the attitude reference trajectory.

6. CONCLUSION

The objective of this paper was to present an integrated and
multidisciplinary modeling and simulation framework for
flight dynamics, guidance, and control activities in support of
preliminary design efforts of reusable launch vehicles studied
at DLR.



Fig. 8: Phase 5c: Comparison between Moments obtained by
the Nonlinear Inverse Modeling Approach (inv) and Nonli-
near Dynamic Inversion Control (aero).

The modeling framework, based on the object-oriented
and equation-based modeling language MODELICA, takes
into account highly interconnected disciplines, atmospheric
and space environmental conditions, and wide flying envelo-
pes covering ascent and descent phases.

To demonstrate the benefits of this approach, the AURORA
reusable launch vehicle concept was investigated in the con-
text of the methods presented here. Dedicated 3-DOF and 6-
DOF vehicle dynamic models are described and implemented
covering the kinematics and dynamics formulation, environ-
mental effects, aerodynamics, and propulsion models for sy-

stem dynamics analyses, trajectory simulations, and prelimi-
nary G&C studies in terms of vehicle controllability. The pre-
sented framework establishes a connection between 3-DOF
and 6-DOF analyses allowing the generation of 6-DOF mo-
del control inputs for accurately tracking 3-DOF trajectories.
These results can then be used in further studies regarding
controllability and stability issues.

Flight simulations show that this nonlinear inverse model
approach can account for the required moments to accurately
track a reference trajectory, while providing the required ae-
rodynamic moments to be produced by the aerodynamic con-
trol surfaces even if an invertible aerodynamic model is not
yet available. Other external perturbations and the effect of
parametric and modeling uncertainties are the subject of fu-
ture work.
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