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ABSTRACT

In the context of future Human Spaceflight exploration mis-
sions, Rendezvous and Docking (RVD) operational activities
are mandatory and critical for the assembly and maintenance
of cislunar structures. The scope of this research is to inves-
tigate the specifics of orbits of interest for RVD in the cislu-
nar realm and to propose innovative strategies and trajectory
designs to safely perform far rendezvous operations. With
a focus on Near Rectilinear Halo Orbits (NRHO), this work
investigates passively safe drift trajectories in the Ephemeris
model in order to exhibit phasing orbit requirements to ensure
safe far approach while admitting low-cost transfer capabili-
ties.

Index Terms— Rendezvous, EML2, Near Rectilinear
Halo Orbits, Trajectory design, Safety

1. INTRODUCTION

Rendezvous and Docking (RVD) operational activties are
mandatory and critical for cargo delivery and crew echange
missions targeting a cislunar infrastructure, such as the future
Lunar Orbital Platform-Gateway (LOP-G) [1, 2]. There is
extensive experience with RVD in the two-body problem in
Low Earth and Lunar Orbits and to various space stations,
based on the Apollo missions or the ATV deliveries to the
ISS. Despite that, the problem of RVD in non Keplerian dy-
namics is a quite recent topic and no operational rendezvous
has yet been performed in the vicinity of the Lagrangian
points.

In recent years, an emergence of publications on the sub-
ject of RVD in the cislunar realm has been observed, often
related to studies focusing on the LOP-G and Orion mis-
sions. [3, 4] Near Rectilinear Halo Orbits (NRHOs) have
been identified as suitable locations for placing large cislunar
infrastructures and for multi-mission staging, due to their at-
tractive eclipse avoidance properties and relative easy access
and departure [5].

The scope of this paper is to investigate the specifics of
orbits of interest for RVD in the cislunar realm and to pro-
pose innovative strategies and trajectory designs to safely per-

form far rendezvous approaches in such a complex environ-
ment. With a focus on NRHOs about the L2 Earth-Moon La-
grangian point (EML2), previous work has investigated close
rendezvous relative dynamics using linear and non-linear tar-
geting algorithms [6]. This work focuses on natural far ap-
proach and the investigation of passively safe drift trajecto-
ries in the Ephemeris model. The goal is to exhibit phasing
orbit requirements, given a prescribed target orbit, that ensure
safe free motion and natural approach of a spacecraft near the
target.

First, the formulation of the equations of motion in both
the CR3BP and the full Ephemeris model is analyzed. These
results are then used to construct long term pseudo-stable or-
bits by means of multiple shooting differential correction and
adaptive long-horizon targeting algorithms. The non-linearity
of the Ephemeris model leads to quasi-periodic NRHO-like
trajectories naturally drifting with respect to their CR3BP
counterparts. This natural drift is then exploited to achieve
natural approach of the chaser to the target. Different phas-
ing orbits are compared depending on the radius of their
perilune, and classified according to their natural approach
capabilities. Finally, safety issues are adressed using impact
prediction strategies derived from debris avoidance analysis.
A general methodology to design safe free drift approach for
RVD in the ephemeris model is thus presented.

2. DYNAMICAL MODELS

2.1. The Circular Restricted Three-body Problem (CR3BP)

The CR3BP describes the motion of a massless particle P
under the gravity field created by two massive primary bod-
ies, P1 and P2, assumed to be punctual and with masses m1

and m2 respectively. Both P1 and P2 are in a circular motion
around their center of mass. By convention, m1 > m2 and
the mass parameter µ =

m2

m1 +m2
is introduced. A synodi-

cal, barycentric rotating reference frame R(O, xyz), with its
origin at the center of mass of the system, is adopted. The
system is also made nondimensional using appropriate nor-
malizing length and time. One can refer to [7] for a detailed



description of the problem.
The second-order equations of motion of P in the synodic

frame are:
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Ux, Uy and Uz are the partial derivatives of U with re-
spect to x, y and z, and r1 =

√
(x+ µ)2 + y2 + z2, r2 =√

(x− 1 + µ)2 + y2 + z2.

2.2. The Ephemeris Model

The Ephemeris model is commonly referred to as the Solar
System N-Body Problem. The orbits of the primaries are no
longer planar nor periodic, but are given by ephemeris of the
precise positions and velocities of the bodies over time.

The motion of a massless point P under the influence of
N − 1 massive primaries, of masses m1,m2,...,mN−1 respec-
tively, is given by the second order differential equation:

Ẍ = −µ1
X
||X||3

−
N−1∑
i=2

µi

(
X− Xi

||X− Xi||3
+

Xi

||Xi||3

)
(2)

where µi is the standard gravitational parameter of the i-
th primary, defined as µi = G · mi, G is the gravitational
constant and Xi is the position vector of the i-th primary. The
force model is purely newtonian. The equations of motion
are formulated in an inertial frame and describe the state of
the spacecraft X(t) relative to the position of a primary (by
convention, the first primary of the N -body system is cho-
sen). This formulation can be modified to take into account
additional perturbations, such as the solar radiation pressure
or non-uniformities in gravity fields of the primaries.

This study includes the influence of the Moon, Earth and
Sun modeled as point masses using the gravitational param-
eters shown in Table 1. The motion of the primaries are ex-
tracted from the DE421 Ephemeris of the Jet Propulsion Lab-
oratory (JPL), embedded in the SPICE Toolkit [8].

Table 1. Gravitational parameters (from DE421 [8])

Primary µ (km3/s2)
Earth 3.9860043623× 105

Moon 4.902800076× 103

Sun 1.32712440040944× 1011

(a) CR3BP (b) Ephemeris: 10-revolutions

(c) 100 days no correction (d) Ephemeris: 500-revolutions

Fig. 1. Southern EML2 NRHO with rp = 5930 km in dif-
ferent dynamical models, represented in the synodic frame
(CR3BP) or pseudo pulsating frame (Ephemeris)

3. GENERATING NRHOS IN THE EPHEMERIS

This section describes the methodology applied to obtain
orbits with NRHO-like motion in the Ephemeris model de-
scribed in section 2.2. The methodology consists in starting
from an NRHO solution of the CR3BP and differentially
correcting it in the Ephemeris model. The process will be
briefly described here, one can refer to [9, 10] to learn more
about the generation of CR3BP orbits and their transition to
the Ephemeris model.

3.1. NRHOs in the CR3BP

NRHOs are a subset of Halo orbits, named after their elon-
gated shape and quasi-perpendicular orientation with respect
to the plane of motion [11]. This work focuses on Southern
EML2 NRHOS, characterized by by an apolune passing over
the lunar south pole and a low perilune radius. In the CR3BP,
NRHOs are periodic orbits.

The usual methodology to obtain such orbits is to use an
appropriate first guess of a periodic solution in the linearized



CR3BP [12] and apply diferential correction to the initial state
of the orbit to enforce periodicity [13]. Figure 1.a shows an
example of a Southern EML2 NRHO in the synodic frame.

Typically Halo orbits are constructed and classified ac-
cording to their out-of-plane amplitude Az . However, since
EML2 NRHOs are characterized by their close approach to
the Moon at the perilune, it is more convenient to classify
them by perilune radius rp.

3.2. Transition to the Ephemeris

In the Ephemeris model, NRHOs are no longer periodic
but quasi-periodic, due to the highly non-linear dynamics
involved. In order to preserve the stability and coverage prop-
erties of such orbits, it is paramount to ensure a soft transition
to the Ephemeris model. In addition, the close approach to
the Moon leads to very fast dynamics near the perilune with
great dispersion of velocity increments. This translates into
difficulties to converge for numerical solvers such as classical
differential correctors.

NRHOs computed in the CR3BP provide an accurate ini-
tial guess for transition to the Ephemeris model. In order to
perform the correction, an epoch-varying multiple shooting
differential corrector is employed, with additional constraints
added to ensure epoch continuity [9]. The solution obtained
is indeed ballistic and quasi-periodic (Figure1.b) but diverges
after roughly 90 to 100 days (Figure1.c): preserving NRHO-
like motion requires additional stationkeeping.

In order to generate long-term stable orbits, another cor-
rection process must be added to the procedure. For this work,
an adaptive Long-Horizon (or Receding-Horizon) correction
scheme was applied [14, 5]. The ballistic trajectory obtained
with the multiple-shooting correction is used to initalize the
long-horizon procedure. In the CR3BP, Halo orbits are char-
acterized by a velocity vx = 0 at the y = 0 plane crossing.
The long-horizon correction algorithm starts from the per-
ilune of the orbit and propagates for a number NLH of revo-
lutions downstream until the y = 0 plane crossing is reached.
It then performs differential correction on the velocity com-
ponent of the state vector at the perilune to enforce vx = 0
at the end of the propagated state. The new obtained orbit is
guaranteed to be stable for at leastNLH revolutions. The new
initial state is propagated till the next perilune, and the process
is repeated until a satisfying number of stable revolutions are
achieved.

The choice of the NLH parameter is paramount: in order
to reduce the ∆V cost for stationkeeping, velocity increments
at the perilune must be lowered as much as possible. Higher
values of NLH lead to lower correction velocities (shown in
Table 2), but in return result in higher computational strain.
This works proposes the use of an adaptive long-horizon ap-
proach, withNLH varying depending on the orbit propagated.
The user specifies a maximum ∆Vmax amplitude of maneu-
ver for each single event at the periapsis, and the algorithm

selects the best long horizon parameter based on a series of 10
revolution simulations. Starting from NLH = 5, maneuvers
are computed. If at some point during the test propagation a
maneuver exceeds ∆Vmax, the process is interrupted and re-
initiated with NLH = NLH + 1, until the maximum maneu-
ver amplitude condition is verified. For this work, ∆Vmax =
1 mm · s−1. This protocol is especially advantageous when
trying to propagate orbits for large time scales (>1 year), and
typically for 2000 km < rp < 6500 km come parameters in
the 5 < NLH < 11 range. Using this methodology the orbit
maintenance budget for a 500-revolution NRHO-like motion
with rp = 5930 km (' 10 years) is equal to 61.729 mm/s,
with a maximum maneuver amplitude of 0.518 mm/s. These
values are consistent with the ones found in the literature [5].

Table 2. Variation of stationkeeping ∆V depending on NLH ,
for rp = 5930 km and 10 revolutions

NLH ∆Vmax (mm/s) ∆Vtotal (mm/s)
8 4.15 6.00
9 0.77 1.62
10 0.36 0.64

4. NATURAL DRIFT AND FAR RENDEZVOUS

As an extension of successful rendezvous operations per-
formed in Low Earth Orbit, it is possible to identify three
successive phases in rendezvous operations: the transfer
phase, the far rendezvous and the close rendezvous. This
work focuses on the far rendezvous operations: taking place
after the spacecraft has been injected into a proper phas-
ing orbit. This section details how to use the natural drift
of Ephemeris NRHOs with respect to their reference in the
CR3BP to achieve natural far RVD.

4.1. Study case

In the following analysis, the term ”chaser” refers to the
spacecraft performing the maneuvers to reach the ”target”
orbiting infrastructure, placed on a Southern NRHO about
EML2. For this study, a perilune radius rp,target = 5930 km
was chosen for the target orbit. This choice is driven by
accessibility constraints from both LLOs and LEOs, low un-
stability properties and a 4:1 resonance with the lunar synodic
cycle. Such an orbit could indeed, with proper phasing and
orientation, ensure eclipse avoidance for extended periods of
time [4, 5]. However, the methodology presented in this pa-
per is applicable to target NRHOs of different perilune radii
without exception. The chaser is placed on a Southern EML2
NRHO with varying perilune parameter rp,chaser. The refer-
ence epoch orbit generation is set to 2025 NOV 8 23:22:07.
Far rendezvous occurs before close proximity operations be-
gin (final approach, docking/berthing, etc.) and given the



distance between chaser and target relies on absolute naviga-
tion for the most part (above 75-100 km).

As shown in Figure 1.b NRHOs are no longer periodic
in the Ephemeris and tend to hover around their reference
CR3BP counterpart in a pseudo-pulsating frame, N -body
equivalent of the synodic frame [15]. Starting from an
rp = 5930 km target orbit, the idea is to see how the drifts of
both the target and nearby candidate phasing orbits overlap,
and exploit these properties to achieve safe natural approach
as shown in Figure 2.a.

Two different regions shall be investigated. The approach
region corresponds to candidates within a distance 75 km <
d < 100 km of the target orbit. Such boundaries are cho-
sen because they typically correspond to the range at which
RF ranging can be intiated [16]. The safety region is defined
within a radius of 50 km around the target orbit. This region
identifies potentially dangerous candidates (collision threats)
that should be treated separately and will be discussed in Sec-
tion 5.

(a) Natural far rendezvous (b) Local plane search

Fig. 2. Natural far rendezvous locations

4.2. Natural drift approach: candidate search

Not all locations in an NRHO are suited to start close-
proximity maneuvers. Close passage to the Moon at the
perilune comes with very fast dynamics. This is problem-
atic for three main reasons. The first is the duration of the
rendezvous operations that is not negligible with respect to
the amount of time spent near the perilune. Another reason
prescribing rendezvous at the perilune is the large dispersion
maneuver that can result from maneuver failures or inap-
propriate state estimation in the area. Finally, in case of an
important failure involving large drifts of the spacecraft, the
chaser would then be hovering in an uncertain manner near
the Moon with therefore higher probability of entering tra-
jectories quickly impacting with the Moon surface or other
infrastructures placed on Low Lunar Orbits. For all these rea-
sons RVD operations should take place as close as possible
from the apolune of the NRHOs.

When looking at the drifting trajectories and possible
close encounter candidates resulting from this free motion,
it is thus useful to classify them depending on their angular
location. Let us call θ ∈ [0; 2π] the angular parameter giv-
ing the location of a spacecraft on its corresponding NRHO,
defined with respect to the appropriate pseudo center so that
θ = 0 at the perilune and θ = π at the apolune, and with
respect to the z axis of the Earth-Moon pseudo-pulsating
frame.

• Locations with θ < π/2 and θ > 3π/2 are considered
near-perilunar and therefore discarded for RVD activi-
ties

• Locations with π/2 < θ < 3π/2 should be considered
as potential candidates for RVD operations. Specifi-
cally cases with 3π/4 < θ < 5π/4, defining near-
apolunar regions, are of special interest.

A first way to find potential overlapping drift candidates
with very little computational effort is to apply a local-plane
crossing search procedure. For each point of the propagated
target orbit, a local plane is defined using its two nearest
neighbors. If xt,k is the position vector corresponding to the
k-th point of the target orbit, the local plane is defined on
point xt,k using the vectors (xt,k+1 − xt,k, xt,k − xt,k−1). If
at some point in the chaser orbit two consecutive states xc,i+1

and xc,i+1 are found on different sides of the nearest local
plane of the target orbit, then a single distance check gives
information on the dangerosity or interest of the location.
Figure 2.b gives an example of such a search performed with
a chaser orbit with rp = 5530 km and neighbors nearest than
50 km.

The local plane search method, however, can only give
a rough estimation of potential candidates and should only
serve to quickly find an order of magnitude for the number of
potential points of interest or dangerosity for natural RVD.

Two other alternatives exist. The first is a simple nearest
neighbor search performed over all the propagated points of
the orbits. The other, more computationally demanding, re-
quires to first define a cylinder around the target orbit. The
radius of the cylinder corresponds to the radius of search for
overlapping candidates. The surface obtained is then trian-
gulated using Delaunay triangulation [17] and points in the
chaser orbits are then investigated to see if they belong inside
the newly defined volume. Alternatively, such a cylinder can
also be constructed for the chaser orbit and the candidates
found looking at the intersection of two Delauney surfaces.
The use of such tubes is only really recommended when the
resolution of the orbit is not high enough and interpolation
is required. Even though the process of accessing Delaunay
triangulations of both chaser and target tubes can be compu-
tationally demanding, for long-duration orbits it can be faster
than refining the Ephemeris orbit to add more query points.



(a) Full distribution

(b) Zoom at 5000 km ≤ rp ≤ 5230 km

Fig. 3. Minimum time between two natural RVD windows

4.3. Natural drift approach: analysis

Figure 4 shows the number of potential RVD candidates and
perilune encounters depending on the perilune radius of the
phasing NRHO, after 10 revolutions of the target orbit. For
orbits with rp < 4330 km, no candidates are within the ap-
proach region defined in Section 4.1. Obviously, as rp,chaser
grows and tends towards rp,target, the number of encounters
exponentially grows. The objective here is twofold: ensure
the phasing orbit offers enough encounter possibilities within
the approach tube and avoid as much as possible periapsis
encounter candidates which represent possible hazardous sit-
uations at the perilune where maneuvers should be avoided
as much as possible. For this study’s target orbit, the ex-
ponential growth for periapsis encounters starts skyrocketing
at rp ' 5300 km. This perilune value should therefore be
considered an upper boundary for the chaser orbit perilune
if one wants to take advantage of the natural approach. For
chaser orbits with rp ≤ 4550 km no overlapping of the chaser
NRHO with the target orbit occurs within the approach re-

gion. Such orbits offer no natural far rendezvous opportuni-
ties and can therefore be discarded for the present study. The
domain under consideration for the chaser orbit is therefore
4550 km ≤ rp ≤ 5300 km.

A trade-off becomes apparent here: the more the chaser
orbit will tend towards the upper bound, the more rendezvous
opprtunities there will be, but the more hazardous cases will
need to be investigated near the perilune. It is important to
note that, if the far rendezvous succeeds, these encounters are
a non-issue because they happen after the first revolution of
the chaser has taken place. But in case of a no-go or if the
RVD is postoponed, they become possibly hazarduous sit-
uations that need to be taken into account. Three criteria
should drive decision-making at this point: safety consider-
ations (discussed in Section 5), budget for transition to prox-
imity operations (Section 4.4) and finally opportunity window
recurrence.

Opportunity window recurrence refers to both the delay
necessary to reach another rendezvous opportunity in case of
a no-go, and the duration of the opportunity window. Fig-



Fig. 4. Distribution of natural far RVD candidates with respect to perilune radius of the chaser orbit, after 10 revolutions of the
target orbit

ure 3 represents the minimum time between two exploitable
windows as a function of the perilune radius of he chaser or-
bit. For the studied target orbit and within the 4550 km ≤
rp ≤ 5300 km range defined for the chaser orbit, four differ-
ent cases are observed:

• rp ≤ 4750 km: No interesting windows: short dura-
tions (maximum of 30 minutes) and very long wait in
between two windows.

• 4750 km ≤ rp ≤ 5000 km: Opportunity windows
last in average 1 hour, but because the wait time be-
tween windows is quite high (100 hours average) only
one opportunity can be reasonably exploited.

• 5000 km ≤ rp ≤ 5100 km: Most suited range for
cargo/uninhabited missions with weak time-of-flight
constraints. Windows last between 1 and 2 hours with
typical times in betwen windows of 23 to 72 hours.
For instance rp ' 5080 km provides 2 opportunity
windows of durations 1.08 h and 3.45 h respectively,
with a wait time of 48h.

• 5100 km ≤ rp ≤ 5300 km: Range suitable for for
both cargo and possibly manned flights. Opportunities
tend to last between 1 and 6 hours with relatively short
wait times. A good example is provided by the rp '
5230 km chaser orbit. Two windows of 1.03 h and 2.13
h respectively are separated by a wait time of ∼ 1 h.
In case of two consecutive no-gos at those windows,
a re-phasing maneuver performed a the periapsis will
provide access to two other opprtunities, of 1.11 and
0.21 h respectively, separated by a duration of 0.14 h.

4.4. Transition to close proximity operations, low-transfer
capabilities

Once the chaser has entered the approach zone and is there-
fore in proximity of the target, different scenarios can be con-
sidered. The tradeoff between the different options available
is beyond the scope of this work and will be part of future pub-
lications. One option is to consider ending the far-rendezvous
and initiating proximity and close operations protocols. This
is of course subject to the validty of relative models and rela-
tive navigation measurements within the approach sphere do-
main. The other option is to engage a transition between far
and close rendezvous by adding two maneuvers. The trans-
fer can be computed using Lambert arcs in the Ephemeris,
similarly to the computation of a trajectory correction maneu-
ver. One could also revert to the three body representations of
target and chaser orbit in the approach zone and exploit the
invariant manifolds of the orbits to find low-energy transfers
within this domain.

5. SAFETY ANALYSIS AND PHASING ORBIT
SELECTION

The orbits described and selected in Section 4 must also be
analyzed from a safety point of view. Section 4.2 established
that natural approach trajectories have the chaser spacecraft
enter the so-defined safety region of the target. One must
ensure that such events do not present any major risk of en-
counter between the two objects, in order to reduce the oc-
curence of collision avoidance maneuvers in case of a no-
go. This section details the safety analysis of such possi-
ble encounters, that happen when the chaser enters a tube



of radius r = 50 km around the target, following its trajec-
tory. This safety analysis will focus on chaser orbits in the
4750 km ≤ rp ≤ 5300 km range, as they were shown to
be the most interesting locations for natural far rendezvous
approach (Section 4.3).

5.1. Covariance ellipses, probability of collision

This work makes use of estimation techniques for conjunction
threats commonly used for debris-avoidance analysis. It is
based on the works of Alfano, Oltrogge, Chan and al. [18, 19,
20] A brief summary of the concepts used in this work will be
presented for completion’s sake.

Probability of collision Pc is a useful and popular tool to
assess conjunction threats. Relying on proababilistic theory,
it makes use of concepts such as miss distance and covariance
noise to establish the probability of two objects encountering,
each following its own independent trajectory.

The following simplifying assumptions are made:

• Chaser and target are modelled as two spherical objects
(of respective radii Rc and Rt), and the relative motion
of the target with respect to the chaser is observed: the
chaser is fixed in this new local reference frame.

• Relative motion of chaser and target is fast enough
within the encounter time to be considered linear.

• Positional noises are zero-mean, Gaussian and uncor-
related.

• The covariance matrix is considered constant during the
encounter.

In such a model, the uncertainty in chaser and target po-
sition is modelled by two covariance ellipsoids centered on
their respective bodies. Given a covariance matrix Σ, and a
body position vector µ, the covariance ellipsoid can be de-
fined as the set:

ε = {x : (x− µ)T Σ−1(x− µ) ≤ χ} (3)

where χ is the value of a chi-square distribution with three
degrees of freedom, and defines the percentage of the proba-
bility distribution contained within the ellipsoid.

Fig. 5. Modeling of an encounter in the approach region

In the chaser-local reference frame, the target’s linearized
motion is represented as a tube. Collision occurs if the dif-
ference in position between chaser and target is less than the
sum Rc +Rt. The probability of collision is computed as the
integral of the three-dimensional probability density function
over the target tube. From the two covariance ellipsoids at-
tributed to each object, and because noises are uncorrelated,
one can build a combined covariance ellipsoid centered on
the chaser. The modeled encounter in the approach region is
shown in Figure 5.

Numerical methods to evaluate the probability integral
exist, however it is possible to obtain quite easily an up-
per boundary for Pc. For a given aspect ratio AR ≥ 1 of
the combined ellipsoid projected in the encounter plane, the
maximum probability of collision is given by:

Pc,max =

(
α

1 + α

)(
1

1 + α

) 1

α (4)

where α =
(rc + rt)

2AR

d2target−chaser

5.2. Safety results

The maximum probability of collision is computed for each
set of encounter candidates and for two different types of error
in position determination: one with 3σ = 1 km (small error)
and one with 3σ = 10 km (medium error). In equation 3, the
value of χ is set to 7.815 to account for 95% of the probability
distribution. The target is asummed to be a space station with
dimensions comparable to the ISS, modeled as a sphere of
radius 110 m. The chaser is modeled as 10 m radius sphere
(dimensions comparable to the length of ESA’s Automated
transport Vehicle).



Fig. 6. Maximum probability of collision in the safety region for different perilune radii of the chaser orbit, and a navigation
position error 3σ = 10 km

Small navigation uncertainties (3σ = 10 km) lead to the
chaser ellipsoid and target tube not intersecting: the prob-
ability of collision in this case is infenitesimal if not null.
This happens for all chaser orbits within the 4750 km ≤
rp ≤ 5300 km range. For medium navigation errors (3σ =
10 km), non-null probabilities start to appear, showcased in
the distribution depicted in Figure 6. One must keep in mind
that the maximum probability just gives a rough estimate of
a maximum threshold for the real probability of collision.
The over-estimation of the real probability should be around
one or two orders of magnitude, but we can however observe
that Pc,max dramatically increases when 5050 km ≤ rp ≤
5125 km. In this region, a complementary analysis using
continuous probability of collision computations may prove
useful to determine wether the risk is viable or not. How-
ever, even considering the maximum probability, the value of
Pc,max = 6 ·10−4 is an absolute threshold that seems reason-
able, translating into a collisional event happening in average
every ∼ 450 years (which is far beyond the scope of the 10
revolutions depicted in this study). In order to ensure opti-
mal safety for natural rendezvous operations, the user could
also simply choose to pick rp within the ”wells” observed
for Pc,max, namely around 4750 km ≤ rp ≤ 4950 km and
rp ∼ 5000 km for cargo missions, or rp ∼ 5150 km and
rp ∼ 5250 km for manned missions.

6. CONCLUSION

This work has presented a methodology to fully design nat-
ural and safe far-rendezvous transfers between two NRHOs,
leading to some conditions on the phasing orbit of the chaser
that are dependent on the choice of that target orbit.

It was first established how to generate NRHO-like or-
bits in the Ephemeris at very little stationkeeping cost, using
an innovative long-horizon correction scheme. Then, given
a prescribed target orbit, it was established that candidates

for a natural far-approach could be exhibited using different
methods like local plane search, close-neighbor search or De-
launey triangulation. The candidates were consequently clas-
sified depending on their location relative to the target orbit,
the duration of the approach window and the time interval be-
tween two suitable RVD windows. Finally, the last selected
candidates were submitted to a safety evaluation check, and
some wells for the maximum probability of encounter were
exhibited.

These sucessive steps taken alltogether form a robust
methodology to construct free natural drift transfers suited
to far-rendezvous oeprations. Future work will focus on the
transition between close and far rendezvous, at the end of
the drift, in order to identify how to initiate most efficiently
proximity operations.
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