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ABSTRACT

This paper presents the design of solar-sail transfer trajecto-
ries to solar-sail displaced libration point orbits in the Earth-
Moon system. The existence of families of solar-sail dis-
placed libration point orbits in the Earth-Moon system has
recently been demonstrated. These families originate from
complementing the dynamics of the classical Earth-Moon cir-
cular restricted three-body problem with a solar-sail induced
acceleration. Previous work has furthermore demonstrated
the applicability of these orbits for high-latitude observation
of the Earth and Moon. To not only demonstrate the existence
and applicability of these orbits, but also their accessibility,
this paper investigates the design of solar-sail transfers from
Earth-bound parking orbits to a subset of these orbits. Ini-
tial guesses for the transfers are generated using reverse time
propagation of the dynamics, where the control is provided
by a locally optimal steering law. These initial guesses are
subsequently used to initialize a 12th-order Gauss-Lobatto
collocation method to satisfy a large number of constraints:
departure from specific high Earth orbits, a minimum altitude
with respect to the Earth and the Moon, and a maximum ro-
tation rate of the solar sail. As an application of the devel-
oped methodology, this paper shows results for transferring
two spacecraft to a constellation of displaced vertical Lya-
punov orbits at the Earth-Moon L2 point. This constellation
has been shown to provide continuous coverage of the lunar
Aitken Basin and the lunar South Pole while maintaining a
continuous line of sight with Earth. Sets of feasible trajecto-
ries for both spacecraft with identical launch conditions are
produced in order for the constellation to be initiated using
a single Soyuz launch. Such a Soyuz launch can deliver two
1160-kg spacecraft into the found transfer trajectories. One of
the spacecraft subsequently requires a transfer time of 53.06
days to enter its constellation orbit, while the transfer of the
other spacecraft takes 67.89 days. These results prove the
accessibility of solar-sail displaced libration point orbits in
the Earth-Moon system, thereby reaffirming the potential of
solar-sail technology to enable novel scientific missions in the
Earth-Moon system.

Index Terms— Solar sailing, libration points, Earth-
Moon system, locally optimal steering laws, collocation

1. INTRODUCTION

Recent developments in solar-sail technology [1, 2, 3] grant
opportunities for the advancement of new mission concepts.
The advantage of employing a solar sail is that a continuous
acceleration can be provided without the need for a mass-
consuming propulsion system [4]. This allows for new types
of non-Keplerian orbits in two-body systems, e.g., around
Earth or the Sun [4], and in three-body systems, e.g., in the
Sun-Earth system, see, for example, Refs. [4, 5, 6, 7]. More-
over, recent work [8, 9] has demonstrated the existence of
families of solar-sail displaced libration point orbits in the
Earth-Moon system. These families originate from comple-
menting the dynamics of the classical Earth-Moon circular
restricted three-body problem with a solar-sail induced accel-
eration. The addition of this acceleration makes the problem
non-autonomous, but by constraining the orbital period in a
differential correction scheme, closed orbits can be found that
are periodic with the Sun’s synodic motion about the Earth-
Moon system. These orbits can then be cataloged into tra-
ditional orbit families such as solar-sail displaced Lyapunov,
halo, and vertical Lyapunov orbits where different families
can be generated for different solar-sail steering laws. Previ-
ous work has also demonstrated the applicability of these or-
bits for high-latitude observation of the Earth and Moon [10].
For example, orbits from within the family of solar-sail dis-
placed vertical Lyapunov orbits at the L2 point [10], can be
used to provide continuous coverage of interesting features
on the Moon, including the Aitken Basin and the lunar South
Pole. The Aitken Basin is scientifically interesting as it re-
veals deeper layers of the lunar crust [11]. Also, the far-side
of the Moon is a perfect site for a radio-telescope as it is con-
tinuously shielded from Earth-based radio noise and can thus
study signals that can otherwise not be detected [11]. Finally,
in the future, the lunar South Pole may host a permanent hu-
man outpost as it is continuously lit by sunlight, which pro-
vides power, and because water ice is believed to exist in its
permanently shadowed lunar craters [11]. For these proposed
lunar mission concepts, a continuous communication link be-
tween the lunar surface, the spacecraft and Earth is required.
When using a constellation of two spacecraft in such solar-sail
displaced L2 vertical Lyapunov orbits, continuous coverage
of the Aitken Basin and the lunar South Pole can be provided,



while maintaining a permanent view of the Earth [10].
To not only demonstrate the existence and applicability of

these orbits, but also their accessibility, this paper proposes a
methodology to design solar-sail transfers from Earth-bound
orbits to solar-sail displaced libration point orbits in the Earth-
Moon system. This will enable an assessment of the mission
performance in terms of achievable transfer times and deliv-
erable spacecraft (payload) mass. Previous solar-sail transfer
trajectories have been designed using locally optimal steering
laws, e.g., Ref. [12], including transfers in the Earth-Moon
system [13], or using the velocity tangent steering law re-
fined with collocation techniques [14]. These methods result
in trajectories connecting a parking orbit such as geostation-
ary transfer orbit with a target orbit in the Earth-Moon system,
but require rapid changes in the sail attitude and long trans-
fer times. To further improve the design of solar-sail transfer
trajectories, this paper develops a collocation method with a
range of additional path and point constraints.

Initial guesses for these transfers are generated by reverse
time propagation of the dynamics in the solar-sail augmented
circular restricted three-body problem, where the solar-sail
control law is provided by a locally optimal steering law.
In order to enforce constraints on the found trajectories, the
12th-order Gauss-Lobatto collocation method is applied to
transcript the trajectory to a nonlinear programming (NLP)
problem [15, 16]. Collocation methods can incorporate path
and point constraints and, contrary to, for example, multiple
shooting methods, do not require an explicit integration of
the dynamics. Collocation methods also have a wider radius
of convergence than multiple shooting methods, as the sensi-
tivity of the trajectory is distributed over more segments [17].
In order to improve the radius of convergence and accuracy
even further, an error estimation scheme based on Ref. [18]
is applied in order to refine the mesh and equidistribute the
error. Consecutively, the NLP-problem is solved using the
multivariate Gauss-Newton algorithm [19] in conjunction
with a line search method [17].

This paper applies the proposed methodology to obtain
transfer trajectories to the previously mentioned constellation
of solar-sail displaced L2 vertical Lyapunov orbits where two
spacecraft are launched with a single Soyuz launch vehicle
into a highly elliptic Earth orbit from where the transfers to-
wards the L2 region are initiated. Once the trajectory for one
of the spacecraft is found, a similar trajectory with identical
launch conditions is sought for the second spacecraft. Finally,
to assess the mission performance in terms of spacecraft (pay-
load) mass budget, a preliminary mass budget is constructed
based on reference satellite data.

2. DYNAMICS

The dynamics of the solar-sail spacecraft are modelled in the
framework of the Earth-Moon circular restricted three-body
problem (CR3BP), taking into account the gravity of the Earth

and Moon, as well as the solar radiation pressure (SRP) acting
on the solar sail. This section will first discuss the dynamics
of the CR3BP, followed by a model for the solar-sail accelera-
tion. Since this acceleration is dependent on the instantaneous
position of the Sun with respect to the Earth-Moon system,
this section ends with a discussion on how the Sun’s motion
around the Earth-Moon system is modeled.

2.1. Circular restricted three-body problem

To express the dynamics in the CR3BP, it is convenient to de-
fine a synodic reference frame, SYN(x̂SY N , ŷSY N , ẑSY N ),
shown in Fig. 1, where the origin is located at the Earth-Moon
barycenter, the x̂SY N -axis is aligned with the Earth-Moon
line, and the ẑSY N is oriented perpendicular to the Earth-
Moon orbital plane, coinciding with the rotational direction
of the reference frame, ωωωrot. Finally, the ŷSY N -axis com-
pletes the right-handed reference frame.
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Fig. 1. Schematic of synodic reference frame.

It is furthermore convenient to use a set of canonical units.
Distances are made dimensionless by taking the Earth-Moon
distance as the unit of length, Ulength. This results in the
Earth being located at r1 = [−µEM 0 0]T and the Moon
at r2 = [1− µEM 0 0]T , where the mass fraction µEM is
defined as

µEM =
m2

m1 +m2
(1)

with m1 and m2 the masses of the Earth and Moon, respec-
tively. Similarly, the time unit, Utime, is scaled such that the
period of the Earth-Moon system equals 2π. Values for these
units and parameters needed to model the Earth-Moon system
can be found in Table 1.

The framework of the CR3BP exists under a set of as-
sumptions: the Earth and Moon are assumed to be point
masses, the orbits of the Earth and Moon are assumed to
be coplanar and circular around their common barycen-
ter, and the mass of the spacecraft, m3, is assumed much
smaller than the masses of the Earth and the Moon such that
m3/m1 ≈ m3/m2 ≈ 0. Using these assumptions, the equa-
tions of motion of the spacecraft in the SYN-frame are given



Table 1. Parameters for the Earth-Moon CR3BP [20].
Parameter Value Unit Description

m1 5.9723 · 1024 kg Mass Earth
m2 0.07346 · 1024 kg Mass Moon
µEM 0.01215 - CR3BP mass fraction
r12 0.3844 · 106 km Earth-Moon distance
PM 27.4520 days Period of the

Moon around Earth
Ulength 0.3844 · 106 km Distance unit
Utime 0.3775 · 106 s Time unit

by [21]:

r̈3 + 2ωωωrot × ṙ3 = −∇U(r3) + a(t), (2)

where r3 =
[
x3 y3 z3

]T
is the position vector of the so-

lar sail in the SYN-frame, ωωωrot=
[
0 0 1

]T
is the rotation

vector of the SYN-frame and a(t) accounts for any additional
acceleration terms; in this paper, the solar-sail induced ac-
celeration. U is the sum of the gravitational and centripetal
potentials given by:

U(r3) = −1− µEM

|r13|
− µEM

|r23|
− x2

3 + y2
3

2
, (3)

r13 = r3 +
[
µEM 0 0

]T
, (4)

and
r23 = r3 −

[
1− µEM 0 0

]T
, (5)

where r13 and r23 are the position vectors of the spacecraft
with respect to the Earth and the Moon. Equation 2 can be
rewritten as a set of first-order differential equations dx

dt =

f(t,x(t),a(t)) with x the state vector, x =
[
rT3 ṙT3

]T
,

which can be explicitly integrated if the solar-sail accelera-
tion in the term a(t) is known.

2.2. Solar-sail acceleration

The momentum carried by solar photons can be exchanged
with an object by reflecting, absorbing and re-radiating these
photons. This principle can be exploited as a propulsion
method by utilizing a large, thin, highly reflective surface
called a solar sail [4]. In this work, the solar sail is assumed
to be an ideal reflector, where every photon is reflected spec-
ularly. In that case, the acceleration generated by the sail acts
perpendicular to the sail membrane. The resulting accelera-
tion is therefore a function of the orientation of the sail. In
order to describe this orientation with respect to the Sun, a
new Sun-sail fixed reference frame, SSF

(
r̂43, θ̂θθ43, ϕ̂ϕϕ43

)
, is

defined, see Fig. 2 [22]. The r̂43-axis is defined along the
incoming SRP direction:

r̂43 =
r43

|r43|
. (6)

The other two axes, θ̂θθ43 and ϕ̂ϕϕ43, are defined as:

θ̂θθ43 =
ẑ× r̂43

|ẑ× r̂43|
, (7)

with ẑ = [0 0 1]T and

ϕ̂ϕϕ43 = r̂43 × θ̂θθ43. (8)
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Fig. 2. Schematic of Sun-sail fixed reference frame, adapted
from [22].

The orientation of the sail normal with respect to the SSF-
frame can be defined by two angles: the cone and clock an-
gles, α and δ, respectively, see Fig. 2. Note that, as the solar-
sail cannot produce an acceleration component in the direc-
tion of the Sun, the domain of the cone angle is limited to
0 deg ≤ α ≤ 90 deg. The normal vector in the SSF-frame is
then given by:

n̂SSF = R1(−δ)R2(−α)
[
1 0 0

]T
,

whereRj(Ψ) is a clockwise rotation matrix of angle Ψ around
the ’jth’-axis of a right-handed reference frame. Equation 2.2
can be written as

n̂SSF =
[
cos(α) sin(α) sin(δ) sin(α) cos(δ)]

]T
.

To express this normal vector in the SYN-frame, the follow-
ing rotation is applied:

n̂SY N =
[
[r̂43]SY N [θ̂43]SY N [ϕ̂43]SY N

]
n̂SSF (9)

The solar-sail acceleration can then be computed from [4]:

a(t) = a0,EM (r̂43 · n̂SY N )2n̂SY N . (10)

The characteristic solar-sail acceleration, a0,EM , is the maxi-
mum achievable solar-sail acceleration for a given spacecraft
mass and solar sail size. In this paper, a value for a0,EM

of 0.1 (dimensionless units) is adopted, following the analy-
ses in Ref. [10], see also Section 3.1. It is assumed that the
spacecraft mass, solar sail size and solar radiation pressure in
the Earth-Moon system are all constant, resulting in a con-
stant a0,EM . If the position of the Sun with respect to the
SYN-frame, r4, is known the solar-sail acceleration can be
calculated from Eq. 10.



2.3. Motion of the Sun

The Earth-Moon system orbits around the Sun, which causes
the direction of the SRP in the synodic reference frame to
change over time. In this work, it is assumed that the or-
bit of the Earth-Moon barycenter around the Sun is circular
and that it is coplanar with the Earth-Moon orbital plane.
This results in a clockwise, circular motion of the Sun in
the (x̂SY N , ŷSY N )-plane around the Earth-Moon barycen-
ter [10], see Fig. 3.
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Fig. 3. Schematic of the position of the Sun with respect to
the SYN-frame.

The position of the Sun is determined by the angular pro-
gression of the Moon around Earth and the angular progres-
sion of the Earth around the Sun. Therefore, the synodic an-
gular velocity of the Sun, ΩS , is used to determine the po-
sition of the Sun as a function of time, which is calculated
using:

Psyn =
1

1
PM
− 1

PE

(11)

and
ΩS =

2π

Psyn
. (12)

The periods of Earth’s orbit around the Sun, PE , and the
Moon’s orbit around the Earth, PM , are provided in Table 2.
The orientation of the Sun with respect to the SYN-frame can

Table 2. Periods and angular velocities of the orbits of the
Earth, Moon and Sun [20].

Parameter Values Unit Description
PE 365.256 days Orbital period Earth
PM 27.3217 days Orbital period Moon
Psyn 29.5306 days Sun’s synodic period
ΩS 0.9252 rad/- Dimensionless angular rate

of the Sun in the SYN-frame

then be described with [10]:

r̂4 =
[
cos(Ωst+ θs,0) − sin(Ωst+ θs,0) 0

]T
, (13)

where θs,0 is the angular progression of the Sun at t = 0 since
the last full Moon. In this work, it is assumed that the dis-
tances in the Earth-Moon system are small with respect to the
Sun-Earth distance, resulting in: r̂34 ≈ r̂4. With r̂43 known
from r̂4, the solar-sail acceleration in Eq. 10 can be evaluated
for a given normal vector, n̂SY N . If then a steering law for
the sail is assumed, the differential equations in Eq. 2 can be
integrated to find the corresponding solar-sail trajectory.

3. PROBLEM DESCRIPTION

As highlighted in the introduction, this paper searches for
transfers between an Earth-based parking orbit and solar-sail
displaced libration point orbits, in particular a constellation
of two solar-sail displaced vertical Lyapunov orbits at the L2

point. In this section, these departure and arrival conditions
are discussed as a general layout of the transfer trajectory.

3.1. Solar-sail displaced L2 vertical Lyapunov orbits

Solar sails can be used to create families of displaced libra-
tion point orbits in the Earth-Moon system [9, 10]. These
orbits can be found by starting from a suitable classical (i.e.,
no solar-sail acceleration) libration point orbit with a period
equal to a fraction or multiple of the Sun’s synodic period,
see Eq. 11. By subsequently fixing the solar-sail steering law,
stepwise increasing the characteristic acceleration of the sail
a0,EM , and applying a differential correction scheme at each
step in a0,EM , families of displaced orbits arise. When start-
ing from a classical vertical Lyapunov orbit at L2 with a pe-
riod equal to two Sun synodic periods, the family in Fig. 4
is obtained. The adopted steering law is one where the sail
tracks the Sun’s motion around the Earth-Moon system, but
is pitched at an angle of α = −35.26 deg with respect to
the Earth-Moon orbital plane. This sail orientation creates an
out-of-plane acceleration component which displaces the or-
bits towards the southern hemisphere of the Moon, thereby
providing better coverage of the lunar South Pole. If two
spacecraft are placed in the orbit for a0,EM = 0.1 with a
phase difference of half an orbital period, i.e., 29.67 days,
those two spacecraft can provide continuous coverage of the
Aitken Basin and the lunar South Pole, as well as maintain
a direct link with Earth [10]. This constellation is shown in
Fig. 5 and these are the two orbits that will be targeted in this
paper.

3.2. Earth-centered Highly Elliptical Orbits

The initial parking orbit for the spacecraft is assumed to be a
Soyuz highly elliptical orbit [23]. The geometry of the HEO
is described using Keplerian elements expressed in an Earth
Centered Inertial reference frame, ECI(x̂ECI , ŷECI , ẑECI)
[24, 25]: a perigee altitude of 250 km, an argument of perigee
of 178 deg and an inclination of 6 deg. The other Keplerian
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elements (apogee altitude, right ascension of ascending node,
and true anomaly) can be chosen freely. The performance of
the Soyuz launch vehicle into a range of HEOs is given in
Fig. 6 as a function of the apogee altitude. Note that the ECI-
frame is defined as follows: the x̂ECI -axis points towards
the vernal equinox, the ẑECI -axis is oriented perpendicular
to the Earth’s equatorial plane, and the ŷECI -axis completes
the right-handed reference frame.

3.3. Trajectory design

To design the transfers of the two spacecraft from HEO to the
orbits in Fig. 5, the trajectories are split into various segments,
see Fig. 7. The initial HEO is described using Keplerian ele-
ments, which adheres to two-body (Earth-spacecraft) dynam-
ics. It is assumed that the spacecraft departs from the HEO at
GEO altitude, where a switch is made to Earth-Moon three-
body dynamics. The first day of the trajectory is modelled
as a ballistic segment to allow the sail to deploy. After the
first day, when the solar sail is deployed, the main part of the

Fig. 6. Transfer mass to HEO as a function of apogee altitude
for a Soyuz launch from Guiana Space Centre [23].

trajectory commences and is propagated until the spacecraft
arrives at the solar-sail displaced L2 vertical Lyapunov orbit
(hereafter in short referred to as solar-sail orbit or SSO).

Earth
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HEO (2-body)

Ballistic trajectory
segment (3-body)
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SSO (3-body)

GEO altitude

Fig. 7. Schematic of the various trajectory segments.

3.4. Reference frame transformations

In order to constrain the initial state vector of the transfer
trajectory to coincide with a HEO, a transformation from
the SYN-frame to the ECI-frame and from Cartesian coordi-
nates to Keplerian elements is required. The first step in the
transformation from the SYN- to the ECI-frame is to trans-
form the spacecraft’s position vector with respect to Earth,
r13, to an intermediate reference frame, the ecliptic reference
frame, ECL(x̂ECL, ŷECL, ẑECL). The ECL-frame is an
Earth-centered pseudo-inertial right-handed reference frame,
where the x̂ECL-axis coincides with the vernal equinox and
the ẑECL-axis is aligned with the angular momentum vector
of Earth’s orbit around the Sun [24]. The transformation from
the SYN-frame to the ECL-frame is given by:

[r3]ECL = R3(Ω2)R1(i2)R3(ω2 +θ2(t))r13 ·Ulength, (14)



and similarly, for the velocity vector ṙ3:

[ṙ3]ECL = R3(Ω2)R1(i2)R3(ω2 + θ2(t))·

(ṙ3 +ωωωrot × r3) · Ulength

Utime
,

(15)

where Ω2, i2, ω2 and θ2 are the right ascension of the ascend-
ing node, inclination, argument of perigee and true anomaly
of the Moon with respect to the ECL-frame. Note that the an-
gular progression of the Moon’s orbit is equal to the time unit
in the CR3BP, i.e., θ2(t) = θ2,0 + t, where θ2,0 is the true
anomaly of the Moon at t = 0. The Moon has an inclination
of 5.145 deg with respect to the ecliptic. However, during this
work it is assumed that the Moon’s orbit coincides with the
ecliptic plane, resulting in a lunar inclination of 0 deg. For
this inclination, Ω2 and ω2 are not defined and are thus re-
placed by a fixed phase angle ϕ2,0 = Ω2 + ω2 + θ2,0. As a
result, the rotational matrices in Eq. 14 and 15 can be rewrit-
ten as:

R3(Ω2)R1(i2)R3(ω2 + θ2(t)) = R3(ϕ2,0 + t). (16)

The state vector expressed in the ECL-frame can then be
transformed to the ECI-frame using:

[r3]ECI = R1(δeq)[r3]ECL, (17)

and
[ṙ3]ECI = R1(δeq)[ṙ3]ECL, (18)

where δeq = 23.44 deg is the obliquity of Earth’s rotation
axis [20]. The Cartesian state vector

[
[r3]TECI [ṙ3]TECI ]

]T
can then be transformed to Keplerian elements, which should
match those of a HEO.

4. INITIAL GUESS GENERATION

Due to the chaotic nature of the CR3BP, it is challenging to
find trajectories that depart from a HEO and perfectly arrive at
the targeted SSO by just varying the conditions of the depar-
ture point along the HEO and assuming a particular steering
law. Therefore, instead, as an initial guess for the transfer,
a backwards approach is adopted where several state vectors
along the SSO are selected from where the dynamics are prop-
agated backwards in time. The integration is terminated if a
set altitude above Earth is reached. Along this trajectory a
locally optimal steering law (LOSL) is used to determine the
sail attitude that maximizes the spacecraft kinetic energy. The
LOSL determines this optimal sail attitude by maximizing the
solar-sail acceleration along the velocity vector

[
ṙ3

]
SSF

at
every integration step along the trajectory. A complete deriva-
tion of the LOSL can be found in Ref. [4]. Here, only the
result is presented. To compute the optimal attitude, first the
spacecraft velocity vector is transformed from the SYN-frame

to the SSF-frame, using:

[ṙ3]SSF =

 r̂43

θ̂θθ43

ϕ̂ϕϕ43

 (ṙ3 +ωωωrot × r3). (19)

This equation computes the inertial velocity, projected in the
SSF-frame. Secondly, the parameter ζ is calculated as a func-
tion of the velocity components

[ṙ3]SSF = [vx,SSF vy,SSF vz,SSF ] (20)

ζ =
−3vx,SSF vy,SSF ± vy,SSF

√
ξ

4(v2
y,SSF + v2

z,SSF )
, (21)

with
ξ = 9v2

x,SSF + 8(v2
y,SSF + v2

z,SSF ) (22)

Equation 21 results in two values for ζ due to the± sign. Both
values of ζ are used to evaluate the desired sail orientation,
n̂SSF =

[
nx,SSF ny,SSF nz,SSF

]
, using:

nx,SSF =
|vy,SSF |√

v2
y,SSF + ζ2(v2

y,SSF + v2
z,SSF )

, (23)

ny,SSF = ζnx,SSF (24)

and
nz,SSF =

vz,SSF

vy,SSF
ny,SSF . (25)

From the two solutions found, the attitude is selected which
maximizes the acceleration along the velocity vector:

aT [ṙ3]SSF = a0,EMn
2
x,SSF (n̂SSF · [ṙ3]SSF ). (26)

The LOSL allows for a larger SRP acceleration along the ve-
locity direction than other steering laws, such as the veloc-
ity tangent steering law or the on-off switching law also de-
scribed by Ref [4]. The LOSL can generate small acceler-
ations along the velocity direction, even if the spacecraft is
moving towards the Sun.

5. TRAJECTORY TRANSCRIPTION

The trajectories found through the application of the LOSL
adhere to the dynamics, but require rapid solar-sail attitude
changes, perform flybys at unfeasible altitudes and do not
depart from a Soyuz HEO. In order to increase the feasibility
of the found trajectories, additional path and point constraints
need to be enforced along the trajectory. However, that prob-
lem contains an infinite number of dimensions, since the
states and controls are described by continuous functions. To
reduce the number of dimensions, this section describes the
12th-order Gauss-Lobatto collocation method, which approx-
imates these continuous functions using 7th-degree piecewise
polynomials. The continuous trajectory problem then reduces
to finding a finite number of polynomials. A set of defect



Table 3. Position of internal and collocation points along
τ [15, 16, 14].

Parameter Type of point Value
τi node 0
τi1 defect 8.48880518607166e-2
τi2 internal 2.65575603264643e-1
τic defect 5.00000000000000e-1
τi3 internal 7.34424396735357e-1
τi4 defect 9.15111948139283e-1
τi+1 node 1

constraints is enforced over these polynomials such that the
dynamics are satisfied. Furthermore, path and point con-
straints are added, resulting in a collection of constraints as
a function of the states and controls. The trajectory problem
is thus rewritten as a non-linear programming (NLP) prob-
lem, which is consequently solved using the Gauss-Newton
algorithm in conjunction with a line search method.

5.1. 12th-order Gauss-Lobatto collocation method

The 12th-order Gauss-Lobatto collocation method is de-
scribed in detail in Ref. [15] and is applied to a solar-sail tra-
jectory problem in Ref. [14]. Higher-order methods, like the
12th-order Gauss-Lobatto collocation method, provide accu-
rate solutions with fewer variables than lower-order methods,
such as trapezoid and Hermite-Simpson methods [26]. Fur-
thermore, the required computation time for higher-order
methods is significantly lower than the required computation
time for lower-order methods.

The method starts by dividing the trajectory into n nodes,
connected by n−1 segments as illustrated in Fig. 8(a), where
every segment is described by a 7th-degree piecewise poly-
nomial, as shown in Fig. 8(b). The polynomial in Fig. 8(b)
can be determined by evaluating both the states and dynam-
ics at the two node points, which would result in a 3rd-degree
polynomial. In order to increase the degree and thus accuracy
of the interpolating polynomial, two internal points are added,
namely xi2 and xi3, which results in a 7th-degree polynomial.
In addition, three defect points xi1, xic and xi4 are added, that
are used to evaluate the dynamics and increase the accuracy
of the method to O(∆t12) [15].

The position of the internal and defect points along the
segment are given by the parameter τ :

τik =
tk − ti

∆ti
, (27)

where ∆ti is the timestep over the ith segment, tk is the time
of the kth internal or defect point along the segment and ti is
the time of the ith node point. Values for τ at the internal and
defect points are given in Table 3.

node 1

node 2

node 3

node 𝑖

node 𝑖+1
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𝜏i3

𝜏i4

node point 𝑖+1

(b)

Fig. 8. a) Trajectory divided into nodes and segments. b) Sin-
gle segment described by a piecewise polynomial as applied
in the Gauss-Lobatto method.

The six polynomials representing the six states over a seg-
ment are described by:

xi(τ) = Ai

[
1 τ τ2 τ3 τ4 τ5 τ6 τ7

]T
. (28)

where the 8 x 6 matrix Ai contains the eight coefficients of
each 7th-degree polynomial for the six states on segment i.
Matrix Ai can be extracted by matching the polynomial with
the states and normalized dynamics at the node and internal
points:

AiB =
[
xi x′i xi2 x′i2 xi3 x′i3 xi+1 x′i+1

]
,

(29)
where x′ik = ∆tif(tik,xik,uik) and matrix B is given by:

B =



1 0 1 0 1 0 1 0
0 1 τi2 1 τi3 1 1 1
0 0 τ2

i2 2τi2 τ2
i3 2τi3 1 2

0 0 τ3
i2 3τ2

i2 τ3
i3 3τ2

i3 1 3
0 0 τ4

i2 4τ3
i2 τ4

i3 4τ3
i3 1 4

0 0 τ5
i2 5τ4

i2 τ5
i3 5τ4

i3 1 5
0 0 τ6

i2 6τ5
i2 τ6

i3 6τ5
i3 1 6

0 0 τ7
i2 7τ6

i2 τ7
i3 7τ6

i3 1 7


. (30)



If matrix Ai is known, the states can be interpolated at any
given point on the ith segment using Eq. 28. The control
defines the sail normal direction n̂SSF (t) over each segment
through the variables ui and u̇i, and is modelled to vary semi-
linearly over each segment and such that |n̂SSF (t)| = 1:

n̂SSF (t) = u(t) =
ui + (t− ti)u̇i

|ui + (t− ti)u̇i|
. (31)

5.2. Defect constraints

Although the polynomial in Fig. 8(b) describes the states over
a segment, it does not automatically satisfy the dynamics.
Therefore, at the three defect points xi1, xic and xi4, the de-
fect constraints are evaluated, forcing the polynomial to ad-
here to the dynamics. The defect constraints can be illustrated
using Fig. 9.
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Fig. 9. Sketch containing a visualization of the defect con-
straints ζζζi. Adapted from Ref. [14].

The states at the defect points are found using [15]:

xi1 = ai1xi + ai21xi2 + ai31xi3 + aip1xi+1+

∆ti (vi1fi + vi21fi2 + vi31fi3 + vip1fi+1) ,
(32)

xic = aicxi + ai2cxi2 + ai3cxi3 + aipcxi+1+

∆ti (vicfi + vi2cfi2 + vi3cfi3 + vipcfi+1) ,
(33)

and

xi4 = ai4xi + ai24xi2 + ai34xi3 + aip4xi+1+

∆ti (vi4fi + vi24fi2 + vi34fi3 + vip4fi+1) ,
(34)

where the required constants a and v are given in Ref. [15,
16]. Using the node, internal and defect points, the defect
constraints, ζζζ, are evaluated as [15]:

ζζζi1 = bi1xi + bi21xi2 + bi31xi3 + bip1xi+1+

∆ti (wi1fi + wi11fi1 + wi21fi2 + wi31fi3 + wip1fi+1) ,

(35)

ζζζic = bicxi + bi2cxi2 + bi31xi3 + bipcxi+1+

∆ti (wicfi + wi2cfi2 + wiccfic + wi3cfi3 + wipcfi+1) ,

(36)

and

ζζζi4 = bi4xi + bi24xi2 + bi34xi3 + bip4xi+1+

∆ti (wi4fi + wi24fi2 + wi34fi3 + wi44fi4 + wip4fi+1) ,

(37)

where the constants b and w are also given in Ref. [15, 16]. If
the value of ζζζ is equal to zero, the dynamics over the polyno-
mial are accurately approximated up to O(∆t12

i ) [14].

5.3. Path constraints

The defect constraints are used to comply with the dynam-
ics of the system. For a feasible trajectory, it is also re-
quired to comply with a set of path (in)equality constraints,
g. As inequality constraints cannot be solved directly by
NLP solvers [17], they are rewritten to introduce slack vari-
ables, transforming the inequality constraints in equality
constraints [14]. The introduction of slack variables enables
the inequality constraint to be active at every node point.
Although this requires the algorithm to always evaluate every
constraint, it eliminates the need for determining the active-
set of constraints.

5.3.1. Path constraints on the control vector

The control, u(t) = n̂SSF (t) is described by a Cartesian unit
vector. As the sail normal vector cannot have a component in
the direction of the Sun, i.e., the cone angle can only take on
values between 0 and 90 deg, the ux,SSF,i element needs to
be constrained to be larger than zero. This is ensured through
the implementation of the following path constraint:

gi1 = ux,SSF,i − η2
i1. (38)

The corresponding slack variable ηi1 should thus equal√
ux,SSF,i. If ux,SSF,i becomes smaller than zero, the con-

straint in Eq. 38 will always be violated for any real ηi1, and
thus the constraint ensures ux,SSF,i ≥ 0.

As the control describes a unit vector, it is also required
for the norm of the control to be equal to 1, i.e., |ui| = 1,
which can be expressed as a path constraint as:

gi2 = 1−
√
u2
x,SSF,i + u2

y,SSF,i + u2
z,SSF,i. (39)

Finally, three control continuity constraints across the seg-
ments are included, which ensure that the control over the
trajectory is described by a piecewise linear function:

gi3 = ux,SSF,i + u̇x,SSF,i∆ti − ux,SSF,i+1, (40)

gi4 = uy,SSF,i + u̇y,SSF,i∆ti − uy,SSF,i+1 (41)

and

gi5 = uz,SSF,i + u̇z,SSF,i∆ti − uz,SSF,i+1. (42)



5.3.2. Path constraints on the trajectory altitude

In order to avoid impact and numerical integration issues
during flybys, altitude constraints are introduced. First of
all, a minimum altitude with respect to Earth is enforced
of h31,min = 3,000 km. Similarly, the minimum altitude
with respect to the Moon is set equal to four Moon radii
or h32,min = 6,952 km. The minimum altitude constraints
are scaled to dimensionless units and rewritten to equality
constraints through the slack variables ηi2 and ηi3 resulting
in:

gi6 = Re + h31,min − r31,i + η2
i2, (43)

and
gi7 = Rm + h32,min − r32,i + η2

i3. (44)

where Re and Rm are the body radii of the Earth and Moon,
respectively, and ri31 and ri32 are the distances between the
spacecraft and the Earth and Moon, respectively, at the ith

node.

5.3.3. Path constraint on sail rotation rate

A solar sail is a flexible structure with a large moment of in-
ertia. Rapid changes in attitude are therefore not feasible for
large sails. The maximum rotation rate of the solar sail with
respect to the Sun-sail line will therefore be constrained to
u̇max = 20 deg/day. If ∆φi is a rotation of the solar sail over
segment i, it can be assumed that ∆φi/∆ti ≈ |u̇| for small
∆ti. After converting the 20 deg/day to dimensionless units,
the rotation rate constraint is enforced in the form:

gi8 = 0.01(u̇max−√
u̇2
x,SSF,i + u̇2

y,SSF,i + u̇2
z,SSF,i − η

2
i4),

(45)

where the constraint is scaled by a factor 0.01 to improve con-
vergence of the NLP-solver.

As can be seen from Eqs. 38-45, a total of eight path con-
straints are active at each node point.

5.4. Point constraints

The defect and path constraints allow for the construction of
dynamically feasible trajectories. In order to also depart from
a HEO and arrive at the SSO, further point constraints are
enforced. First, nine point constraints are added on the final
node to ensure that the final states and controls comply with
the SSO:

cn =

[
xn

un

]
−
[
xSSO(tn)
uSSO(tn)

]
. (46)

In addition, three point constraints are added on the depar-
ture node, such that the trajectory departs from GEO-altitude,
rGEO = 35,786 km, and from an orbit orientation that coin-
cides with a Soyuz HEO:

c1 =

 |r13|
iECI

ωECI

−
rGEO/Ulength

iHEO

ωHEO

 , (47)

where iECI and ωECI are obtained from the transformation
in Section 3.4 and iHEO and ωHEO are the inclination and
argument of perigee of a Soyuz HEO.

5.5. The Gauss-Newton algorithm

In order to solve the trajectory problem, the states and con-
straints are rewritten as an NLP problem. Let the decision
variables for a single segment be collected in a decision vec-
tor Xi of size 28 x 1:

Xi =
[
xT
i uT

i u̇T
i xT

i,2 xT
i,3 ηηηTi

]T
, (48)

subjected to the 26 x 1 constraint vector:

Fi =
[
ζζζTi1 ζζζTic ζζζTi4 gT

i

]T
. (49)

For all segments, the decision vector becomes:

X =
[
XT

1 XT
2 . . . XT

n−2 XT
n−1 xT

n uT
n

]T
,
(50)

with the corresponding constraint vector:

F =
[
cT1 FT

1 FT
2 . . . FT

n−2 FT
n−1 cTn

]T
. (51)

For a trajectory consisting of n segments, a total of 28(n −
1) + 9 decision variables are used to satisfy 26(n − 1) + 12
constraints. For a trajectory of 50 nodes, this would result
in 1381 variables subject to 1286 constraints, which would
be excessively large to solve using grid searches, Monte-
Carlo methods or genetic algorithms. Since all constraints
are smooth and differentiable, the Gauss-Newton algorithm is
used to find the decision vector X for which F = 0 [14]. The
Gauss-Newton algorithm minimizes the sum of the squared
constraint violations, converges quadratically [19] and does
not require the computation of second order derivatives. Al-
though there are an infinite number of search directions DX
which satisfy:

F(X) =
∂F(X)

∂X
·DX, (52)

the Gauss-Newton algorithm solves for the minimum norm
value of DX, such that the characteristics of the initial guess
are best preserved [19]. Since the initial guess is a locally
optimal solution with respect to increasing the spacecraft’s
energy, it is indeed desired to find a feasible trajectory close
to the initial guess.

First, the derivative of the constraint vector F with respect
to X is calculated, resulting in the Jacobi matrix (DF =
∂F(X)
∂X ). Note that Fi is only dependent on Xi, xi+1 and

ui+1. Similarly, the point constraints c1 and cn are only de-
pendent on the departure and arrival node. In order to calcu-
late DF efficiently, only the relevant derivatives have to be
evaluated, while the other derivatives are known a priori to be
equal to zero.



The efficient calculation of the derivatives is achieved by
using the complex step method, which gives an accuracy sim-
ilar to that of the central step method, with only a single func-
tion evaluation [27]. The jth column of DFi can be cal-
culated by adding a small imaginary number to the jth ele-
ment of vector Xi and evaluating Fi using the complex step
method:

∂Fi

∂Xij
=

1

ε
Imag(Fi([Xi1 . . . Xi(j−1) Xij + ε

√
−1

Xi(j+1) . . . Xi28 xT
i+1 uT

i+1])),

(53)

where the partial Jacobi matrix ∂Fi

∂Xi
has size 26 x 19 and ε is

a small constant of value 10−10. Note that the partial deriva-
tives ∂Fi

∂xi+1
, ∂Fi

∂ui+1
, ∂c1

∂X1
, ∂cn

∂xn
and ∂cn

∂un
also need to be eval-

uated. The structure containing the non-zero elements of the
complete Jacobi matrix using seven nodes is shown in Fig. 10.
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Fig. 10. Structure of nonzero elements of the Jacobi matrix
(DF) for a trajectory problem with six segments and seven
nodes.

The Jacobi matrix is applied in the Gauss-Newton algo-
rithm to determine the search direction DX [14]:

DX = −DF(X)
([
DF(X) ·DF(X)T

]−1
F(X)

)
. (54)

Note that if n = 50, the matrix DF has dimensions 1234
x 1381, containing just 26,959 (1.582%) non-zero elements,
which can be efficiently stored using MATLAB R©’s sparse.m
function. Furthermore, the matrix multiplications and in-
verses ofDF are efficiently calculated using the unsymmetric
multifrontal method provided by UMFPACK [28].

The found search direction varies in quality due to non-
linear changes in the dynamics or constraints, especially if
the initial guess is far away from a solution or if close flybys
around the Earth or Moon are present. In order to improve the

radius of convergence, a line search algorithm is used in the
form [17]:

Xnew = X + αlsDX, (55)

where αls is a parameter with a value selected between 0.1
and 1.0 that minimizes

∑
F(X+αlsDX). If the search direc-

tion points in an unfeasible direction, the linesearch algorithm
multiplies the search direction with a small number, resulting
in a new estimate of Xnew. From this new point, a new and
potentially better search direction can be found. This proce-
dure is repeated untill all constraints are met up toO(10−10).

6. MESH AND ERROR CONTROL

Although the 12th-order Gauss-Lobatto method is highly ac-
curate, a discretization error is made across every segment,
which can become unbounded during close approaches of the
Earth or Moon. In order to decrease the discretization error
over the trajectory, the number of linearly spaced nodes can
be increased, but this would increase the computation time.
A more efficient method is to estimate the error made over
each segment and adjust the mesh spacing accordingly. An
optimal mesh distributes the nodes such that the error over
each segment is constant. The piecewise polynomials have
degree seven, for which the error over the ith segment can be
approximated using:

ei = C∆t8i ||x
(8)
i ||+O(∆t9i ) (56)

where C is a dimensionless constant equal to approximately
2.935793951×10−9 [29] and x(8) is the 8th-order derivative
of the state vector. Since x is described by a 7th-degree
polynomial, see Eq. 28, the 8th-order derivative is unknown.
However, it can be approximated by applying a difference for-
mula in order to evaluate x(8) over multiple segments [18]:

||x(8)|| ≈ max
[
2 |y1−y2|

∆t1+∆t2

]
over (t1, t2) (57)

||x(8)|| ≈ max
[
|yi−1−yi|

∆ti−1+∆ti
+ |yi+1−yi+2|

∆ti+1+∆ti+2

]
over (ti, ti+1)

(58)
||x(8)|| ≈ max

[
2 |yn−2−yn−1|

∆tn−2+∆tn−1

]
over (tn−2, tn−1) (59)

where yi is the dimensionless 7th order derivative on segment
i, given by:

yi =
x(7)(τ)

∆ti
=

7 ![xi x′i xi2 x′i2 xi3 x′i3xi+1 x′i+1] · b

∆t7i
,

(60)

in which b is the last column of B−1. The new node points
can now be computed using [14]:

ti+1 = I(ti+1)−1
[
iI(tn)
n−1

]
(61)



where

I(t) =

∫ t

t1

θ8(s)1/8ds. (62)

Since the approximation is a piecewise constant function,
the integral I(t) is a piecewise linear function, which can be
solved for ti+1 in Eq. 61. Using the new mesh, the states are
interpolated using Eq. 28, such that the dynamics are con-
served. Similarly, the control and control derivative are also
interpolated. Finally, the slack variables, ηηη, are recalculated
for the new controls and states, such that the path constraint
violation of the new mesh is minimized.

Note that the activation of the solar sail after the one-
day ballistic phase generates a discontinuity in the dynamics.
Therefore, the trajectory before activation and the trajectory
after activation of the solar sail are treated as different phases
in the error estimation algorithm. As a result, the moment at
which the solar sail is activated, always coincides with a node
point.

7. DESIGN PROCESS

In order to generate feasible transfer trajectories, the theory
described in the previous sections is applied in a systematical
manner. First, an initial guess to the trajectory optimization
problem is generated. Secondly, the departure altitude as well
as the perigee altitude of the HEO orbit are reduced using a
stepwise approach. If a transfer trajectory with a perigee alti-
tude of 250 km is found, the parking orbit inclination and ar-
gument of perigee constraints are enforced. Once one trajec-
tory is found, a novel method to obtain the trajectory for the
second spacecraft in the constellation is applied and a mass
budget analysis is conducted to obtain achievable spacecraft
(payload) masses.

7.1. Generating the initial guess

To generate an initial guess for the trajectory, first a fixed ar-
rival time, tarrival, on the SSO is selected. To find the corre-
sponding state, xSSO, the states are integrated along the SSO
from t = 0 to tarrival using MATLAB R©’s ode45.m func-
tion [30] in accordance with Section 3.1. An initial guess for
the transfer trajectory is subsequently generated by propagat-
ing the dynamics of the CR3BP from xSSO in reverse time,
where the LOSL is used to determine the control along the
trajectory. The backwards propagated trajectory is truncated
at the point with the closest approach to GEO-altitude within
a maximum allowable transfer time. The trajectory is rewrit-
ten as the NLP problem described in Section 5, by evaluating
the states, controls, rotation rates and slack variables on the
node and internal points. In total, 100 equally spaced node
points per lunar period are used to describe the initial guess.

7.2. Enforcing altitude constraints

In order to increase the feasibility of the trajectory, constraints
are enforced through the collocation method. In addition to
the constraints, the sail acceleration is set to zero during the
first day of the trajectory, allowing enough time for the solar
sail to deploy. The altitude constraint on the departure point
is gradually introduced, reducing the altitude of the departure
point to GEO-altitude using ten consecutive steps. During
each step, the constraints in the NLP problem are enforced
using the Gauss-Newton algorithm, followed by a new mesh
refinement with an equidistributed error. Such a stepwise
approach is applied as the initial guess may be far from a
constraint-satisfying solution and the NLP-solver might di-
verge for such large constraint violations. Furthermore, in-
termediate mesh refinements will improve the convergence
to a feasible solution. When the departure point coincides
with GEO-altitude, the orbital elements of the parking or-
bit corresponding to the departure point are calculated. The
GEO-altitude constraint is then replaced by the perigee alti-
tude constraint and is reduced in a similar stepwise approach
to 250 km using 20 steps. During the perigee reduction steps,
no altitude constraint on the departure point is enforced. The
altitude of the departure point might therefore depart from
GEO-altitude and thus, the trajectory is trimmed by cutting
or propagating the starting point at/up to GEO-altitude. This
allows for small variations in the overall transfer time during
each iteration and enables a wider radius of convergence.

7.3. Enforcing HEO constraints

If a trajectory is found with a perigee altitude of 250 km and
a departure altitude equal to GEO altitude, additional con-
straints are enforced such that the trajectory coincides with a
HEO of the Soyuz launcher described in Section 3.2. An in-
clination constraint of 6 deg as well as an argument of perigee
constraint of 178 deg are enforced in a single step. Note that,
in order to complete the transformation between the ECL- and
SYN-frames, a phase angle ϕ2,0 in Eq. 16 is selected through
a grid search, for which the discrepancy with respect to the
newly enforced constraints is minimal.

7.4. Trajectory for spacecraft 2

Once one feasible trajectory (for the first spacecraft in the
constellation) is found, a second trajectory is sought for
spacecraft 2. Preferably, both spacecraft are launched at the
same time with the same launcher, reducing mission cost
and complexity, and providing immediate access to the full
constellation. This requires two distinct transfer trajectories
with different arrival points along the SSO, but with iden-
tical departure conditions. It is difficult to exactly match
six states at a set departure time, even using the colloca-
tion method described in this work. Therefore the following
method is adapted. From initial results, it appeared that the



transfer trajectories and departure conditions remain close
to the Earth-Moon orbital plane. In addition, the targeted
SSO is close to symmetrical in the (x̂SY N , ŷSY N )-plane
(the out-of-plane acceleration component used to produce
the displaced vertical Lyapunov orbits causes the orbit to
be slightly non-symmetric). Still, the found trajectory for
spacecraft 1 can be mirrored in the (x̂SY N , ŷSY N )-plane
for use as initial guess for spacecraft 2. This results in a
trajectory that satisfies the dynamics and path constraints,
but with minor constraint violations on the departure point
and major constraint violations on the arrival point. Further-
more, since the entire trajectory is mirrored, the out-of-plane
control component, nz,SSF , upon arrival is pitched in the
opposite direction with respect to the desired SSO attitude.
Finally, because the SSO is not perfectly symmetric in the
(x̂SY N , ŷSY N )-plane, this causes a small offset between
the final node and the SSO. In order to reduce these con-
straint violations, an additional trajectory phase is added at
the end of the transfer to allow the control to reverse its
nz,SSF -component. As an initial guess for this phase, the
states of the SSO are used over which the control varies semi-
linear from n̂SSF,SC2(tf,SC1) =

[
cosα 0 sinα

]T
to

n̂SSF,SC2(tf,SC2) =
[
cosα 0 − sinα

]T
in accordance

with Eq. 31, with α = 35.26 deg as in Section 3.1. Note that
the subscripts “SC1” and “SC2” refer to spacecraft 1 and 2,
respectively. A total of 50 nodes are used to describe this
phase, with a time length of π/Ωs, which equals 14.84 days.

7.5. Spacecraft mass budget

Once the trajectory for both spacecraft 1 and 2 are found, the
last step is to conduct a preliminary spacecraft mass budget
analysis. Two scenario’s are considered. The first scenario
considers the mass breakdown for two large satellites, utiliz-
ing the complete payload capacity of a single Soyuz launch.
The second scenario considers a CubeSat demonstration mis-
sion, with assumed spacecraft masses of 10 kg. A paramet-
ric mass analysis is carried out to find an estimation of the
subsystem masses. As solar-sail technology is relatively new,
no reliable mass estimation can be made based on reference
satellite data. Instead mass fractions for communication satel-
lites are used from Ref. [31], where the mass fraction used for
the propulsion subsystem is replaced by a calculation of the
required sail area and consequently the required sail mass.
The used mass fractions are shown in Table 4.

The solar-sail mass can be calculated as a function of
the solar-sail area, As, using the critical sail loading, σ∗, of
1.53 g/m2 [4] and the lightness number β0:

β0 = σ∗
As

m3
=
a0,EMr

2
S

µ4
, (63)

where rS is the distance to the Sun equal to 149.6 x 106 km [20]
and µ4 is the gravitational parameter of the Sun equal to

Table 4. Mass fractions for communication satellites from
Ref. [31]. Normalized mass fractions found by removing the
propulsion subsystem.

Fractions Normalized fractions
Payload 0.274 0.2857
Structure 0.213 0.221
Thermal 0.036 0.0375
Power 0.319 0.3326
TT&C 0.048 0.0501
ADCS 0.069 0.0719
Propulsion 0.038 -

1.32712 x 106 km3/s2 [20]. Using these values and a dimen-
sional a0,EM of 0.2698 mm/s2 (corresponding to a dimen-
sionless value of 0.1), it is found that β0 equals 0.0455. The
spacecraft mass, m3, is extracted from Fig. 6 and is used to
determine the required sail area. The solar-sail mass can then
be calculated using:

ms = Asσs (64)

where the sail loading σs is assumed equal to 0.010 kg/m2,
which is considered feasible for near-term sail technol-
ogy [32].

8. INITIAL GUESSES

This section presents the results of the first step in the ap-
proach outlined in Section 7: the trajectories created with the
LOSL. In order to generate a complete map of possible ini-
tial guess transfers, 2000 trajectories are generated by vary-
ing the arrival location along the SSO. For a propagation time
of 365 days, the results in Fig. 11 are obtained. In Fig. 11,
the distance with respect to Earth over time of these trajec-
tories is shown as a function of the arrival time on the SSO
(2000 sample points). This arrival time, tarr, is expressed as
a fraction of the orbital period, PSSO. Note that an arrival
time of tarr = 0 corresponds to the most northerly point of
the vertical Lyapunov orbit.

The actual distance with respect to Earth is provided by
the grayscale in Fig. 11. Due to the reverse time propagation,
the spacecraft starts at a large distance (light colour) at zero-
transfer time. Over the reverse time propagation (along the
horizontal axis), the trajectory will generally start to decrease
its distance with respect to Earth, which is shown by the
darker shaded areas. The propagation is terminated when the
distance becomes less than 250 km or if the distance reaches
two Earth-Moon distances or if the solar sail crashes into the
Moon.

From Fig. 11 it is clear that most arrival conditions en-
able transfers that get close to Earth, where the long section
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Fig. 11. Earth-spacecraft distance as a function of the arrival time on the SSO and transfer time to the SSO, including the cutoff
points for the initial guesses of the collocation method.
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Fig. 12. a) Transfer trajectory using locally optimal steering law for an arrival time of tarr = 1.4π/Ωs = 0.35PSSO. b)
Corresponding sail attitude.

of dark colors along the horizontal direction indicate that the
spacecraft enters a spiral trajectory around Earth until an al-
titude of 250 km is reached. The geometry of the trajec-
tory varies significantly by changing the arrival location along
the SSO. For example, the quickest trajectory that reaches
an altitude of 250 km departs at tarr = 0.1205PSSO and
achieves a transfer time of 50.7 days. Alternatively, if an
arrival time in the range of tarr = 0.890PSSO to tarr =

1PSSO is selected, trajectories are found containing a lengthy
Earth-bound spiral connected to a parking orbit similar to a
geostationary transfer orbit. Instead, a trajectory that arrives
between tarr = 0.456PSSO and tarr = 0.507PSSO trav-
els past the L2 point and escapes the Earth-Moon system,
while a trajectory arriving between tarr = 0.556PSSO and
tarr = 0.573PSSO crashes into the Moon. An example tra-
jectory for tarr = 0.35PSSO is shown in Fig. 12(a), with the



corresponding solar-sail control in Fig. 12(b). It can be seen
that, forwards in time, this trajectory departs from a highly
elliptic orbit around Earth and performs multiple flybys close
to the Earth. After a total transfer time of 108.88 days, the
spacecraft arrives at the SSO. Note that the rapid changes in
the Cartesian components of the control in Fig. 12(b) require
an extremely agile solar sail.

9. RESULTS

9.1. Inactive rotation rate constraint

While the LOSL transfers that are truncated at an Earth al-
titude of 250 km match the required perigee altitude of the
Soyuz parking orbits, the required inclination and argument
of perigee of the HEO are unaccounted for. Furthermore,
the lengthy Earth-bound spirals contain multiple flybys at al-
titudes lower than 1,000 km, which is not considered feasible
for solar sails [33]. Finally, the arrival attitude of the sail does
not match the required attitude of the SSO. In order to address
these discrepancies and improve the feasibility of the results,
the collocation method of Section 5 is employed.

To initiate the 12th-order Gauss-Lobatto collocation
method, initial guesses are extracted from the trajectories
in Fig. 11. A maximum transfer time interval of 3π to 6π
is imposed with steps of π, on which the closest flyby with
respect to GEO is selected as cutoff point, as shown in Fig. 11
by the white crosses. The arrival time on the SSO is further-
more discretized using 40 points equally spaced along the
SSO, i.e., at intervals of 0.1π/Ωs in dimensionless units.
This results in 160 possible initial guesses that are subse-
quently transferred into the collocation method, where the
performance of all converged trajectories is shown in Fig. 13.
On the horizontal axis, the transfer time of the trajectory is
shown, while on the vertical axis the apogee altitude of the
corresponding HEO can be seen. If the apogee altitude of the
parking orbit increases, the maximum deliverable spacecraft
mass to that orbit decreases as given in Fig. 6. Furthermore,
the marker color describes the arrival time on the SSO. If a
feasible trajectory with a perigee altitude of 250 km is found,
it is shown as a circle in Fig. 13. Converged trajectories
that also satisfy the HEO constraints (desired inclination and
argument of perigee) are indicated with a triangle symbol.
Finally, if also a feasible trajectory for spacecraft 2 is found,
it is shown as a star in Fig. 13.

Out of 160 initial guesses, 36 transfers are found for
which the perigee altitude constraint is satisfied. Other initial
guesses failed to converge while reducing the altitude con-
straint using the stepwise approach. The quickest of these
trajectories requires a transfer time of 39.6 days and arrives
at the SSO at tarr = 0.125PSSO. After constraining the
inclination and argument of perigee of the parking orbit to
that of the HEO, 24 feasible trajectories remain, of which
many have a close overlap with the round markers indicating

that the perigee-altitude satisfying trajectories were already
close to matching with a Soyuz HEO. Finally, 8 trajectories
for spacecraft 2 were obtained. Note that after spacecraft
2 arrives in proximity of the SSO, an additional period of
π/Ωs is added as discussed in Section 7.4, which results in a
constant increase in the transfer time of 14.84 days for space-
craft 2. The quickest trajectory for spacecraft 2 completes
the transfer in 67.8 days, while the trajectory for spacecraft
1 with identical departure conditions arrives at the SSO in
53.0 days. These trajectories are shown in Fig. 14 with the
corresponding control profile in Fig. 15.

Both trajectories follow the same path during the initial
ballistic phase. After one day, the solar sail deploys and the
two trajectories as well as the control history start to diverge.
Over time, two flybys close to Earth are performed at altitudes
higher than 10,000 km. A major difference between the tra-
jectories can be seen by comparing the arrival conditions in
Fig. 14(c) and 14(d), as both spacecraft wind onto the SSO at
different locations along the SSO. The control for both space-
craft in Fig. 15 depicts an initial ballistic phase, followed by
a rapidly varying control profile since no rotation rate is en-
forced at this point.

9.2. Active rotation rate constraint

In order to address the rapid changes in the control, this sec-
tion provides the results when generating the same trajectories
but with an active rotation rate constraint. These results are
shown in Fig. 16.

By comparing Figs. 13 and 16, it can be seen that simi-
lar transfer times are found, irrespective of the activation of
the maximum rotation rate constraint. However, the average
apogee altitude is increased, indicating that constraining the
rotation rate results in less energy efficient trajectories. This is
expected as the locally optimal steering law requires large ro-
tation rates and thus constraining the rotation rate results in a
less optimal control. Furthermore, by enforcing a maximum
rotation rate, the constraint violation is increased, requiring
more iterations in the Gauss-Newton algorithm with respect
to the unconstrained case. These iterations will cause the con-
trol profile to further diverge from the initial guess, which can
cause either an increase or decrease in performance. As the
results are feasible and not time-optimal, a direct comparison
of the mission performance between Fig. 13 and 16 cannot
be made. However, the results do show that multiple feasi-
ble solar-sail trajectories continue to exist while including a
maximum rotation rate constraint of 20 deg/day.

Out of 9 trajectories found for spacecraft 2, the quickest
result completes the transfer in 67.9 days, while the trajec-
tory for spacecraft 1 with identical departure conditions com-
pletes its transfer in 53.1 days. These trajectories are shown
in Fig. 17 with the corresponding control profile in Fig. 18.
In order to determine the departure conditions, a value of
φ2,0 = 135.4 deg has been assumed in Eq. 16.
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Fig. 13. Feasible transfer trajectories without rotation rate constraint.

The trajectories shown in Fig. 14 and 17 have a similar
shape as they are both derived from the same initial guess.
Major differences can be seen between Fig. 15 and Fig. 18,
as the maximum rotation rate constraint produces a much
smoother control profile. Note that δ is undefined for α = 0,
which allows for rapid changes in δ without violating the
rotation rate constraint. These results show that solar-sail
transfer trajectories are feasible in the Earth-Moon system
without requiring long transfer times, low-altitude flybys or
unrealistic solar-sail rotation rates.

9.3. Mass budget analysis

The transfer trajectories in Fig. 17 are used for the analysis
on the mass budget. As mentioned in Section 7.5, two mass
budgets are constructed, one for two large spacecraft utiliz-
ing the full Soyuz launch vehicle capacity, and another for
two 10-kg CubeSats. Based on a HEO apogee altitude of
335,200 km (see Fig. 16), the Soyuz launcher can deliver two

spacecraft of 1,160 kg each (see Fig. 6), which is compara-
ble to the solar-sail spacecraft described in Ref. [34]. Table 5
contains the results of the preliminary mass budget. By es-
timating the required sail size, it is found that the 1160-kg
mission requires a solar-sail area of 185.71 x 185.71 m2 and
allows for a 232.89 kg payload, while the 10-kg CubeSat mis-
sion requires a sail area of 17.24 x 17.24 m2 and allows for a
2.01 kg payload.

10. CONCLUSIONS

This paper has proposed a methodology for the design of
feasible transfers to solar-sail displaced libration point orbits
in the Earth-Moon system. The methodology has been ap-
plied to reach a constellation of two solar-sail displaced ver-
tical Lyapunov orbits at the L2 point from where continuous
coverage of the Aitken Basin, lunar South Pole, and Earth
can be provided. A 12th-order Gauss-Labotto collocation
method and an adaptive mesh refinement method have been
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Fig. 14. Inactive rotation rate constraint: (a-b) Trajectories for spacecraft 1 (a) and 2 (b) projected on (x̂SY N , ŷSY N )-plane.
(c-d) Trajectories for spacecraft 1 (c) and 2 (d) projected on (ŷSY N , ẑSY N )-plane.
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Fig. 15. Inactive rotation rate constraint: (a-b) Controls for spacecraft 1 (a) and 2 (b) expressed in Cartesian coordinates. (c-d)
Controls for spacecraft 1 (c) and 2 (d) expressed in cone and clock angle.
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Fig. 16. Feasible transfer trajectories with active rotation rate constraint.

Table 5. Spacecraft subsystem mass estimations in kg for two
mission scenarios.

Payload 2.01 232.89
Structure 1.56 181.04
Thermal 0.26 30.60
Power 2.34 271.13
TT&C 0.35 40.90
ADCS 0.51 58.65
Sail 2.97 344.90
Total 10.00 1160.00

applied to rewrite the trajectory problem to a nonlinear pro-
gramming problem, which has consequently been solved us-
ing the Gauss-Newton algorithm. It has been shown that a
range of path constraints, including altitude, solar-sail rota-
tion rate and continuity constraints, can conveniently be im-
plemented. Results have been produced in terms of two fea-
sible trajectories with identical launch conditions that bring
two spacecraft to their correctly-phased positions in the solar-
sail displaced L2 vertical Lyapunov constellation. During the
transfers, the minimum altitudes with respect to Earth and the
Moon are constrained to 3,000 km and four lunar radii, re-
spectively, and the maximum rotation rate of the solar sail is
constrained to 20 deg/day. The quickest transfer-time solu-
tion shows that the first spacecraft will reach its target orbit
after a transfer time of 53.1 days, while the second space-
craft requires a transfer time of 67.9 days. A single Soyuz
launch can deliver two 1160-kg spacecraft into these transfer
trajectories. A subsystem mass estimation based on reference
satellite data shows that the spacecraft can carry a 232.89-kg
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Fig. 17. Active rotation rate constraint: (a-b) Trajectories for spacecraft 1 (a) and 2 (b) projected on (x̂SY N , ŷSY N )-plane.
(c-d) Trajectories for spacecraft 1 (c) and 2 (d) projected on (ŷSY N , ẑSY N )-plane.
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Fig. 18. Active rotation rate constraint: (a-b) Controls for spacecraft 1 (a) and 2 (b) expressed in Cartesian coordinates. (c-d)
Controls for spacecraft 1 (c) and 2 (d) expressed in cone and clock angle.



payload and requires a solar-sail area of 185.71 x 185.71 m2.
Alternatively, a 10-kg CubeSat mission would be able to carry
a 2.01-kg payload per CubeSat requiring a 17.24 x 17.24 m2

solar sail. These results show that solar-sail transfer trajecto-
ries in the Earth-Moon system are feasible without requiring
long transfer times, low-altitude flybys or unrealistic solar-
sail rotation rates.
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