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ABSTRACT
Online optimization and trajectory planning are key aspects
of autonomous deep space missions. Taking into account in-
dividual target criteria, such as time or energy optimality, any
spacecraft maneuver can be traced back to a general optimal
control problem. This can be transcribed into a nonlinear pro-
gram by time discretization and hence be handled by the offi-
cial ESA NLP solver WORHP.

The effectiveness of this approach has already been
demonstrated in several DLR projects, such as in the deep
space missions KaNaRiA and EnEx-CAUSE. In order to
make such results immediately available for terrestrial appli-
cations, a transfer to current scientific questions is appropri-
ate. Moreover, this would provide a test platform, increase
public acceptance and help planning more detailed space mis-
sions through the knowledge gained from real world testing.

In this work, the DLR project AO-Car for controlling an
autonomous vehicle in road traffic is presented as a success-
ful example for such a transfer. The concept for trajectory
planning and control based on WORHP, originally developed
in the context of KaNaRiA, is successfully implemented on a
research vehicle, a VW Passat GTE.

Index Terms— Autonomous Driving, Model Predictive
Control, Optimal Control, Trajectory Planning

1. INTRODUCTION

Mobility is certainly an essential foundation of today’s soci-
ety. On the one hand this results in strong points of contact
in everyday life and on the other hand in a high level inter-
est in the further enhancement of existing vehicle concepts.
With regard to the latter, the design of autonomous driving
features was one of the most important developments of the
last decade. This is driven by promises of increased road
safety [1], intelligent mobility on demand concepts [2] and
cost-efficient platooning approaches for trucks [3].

*The authors would like to thank Deutsches Zentrum für Luft- und
Raumfahrt (DLR) Raumfahrtmanagement, Navigation in Bonn-Oberkassel
for providing the research vehicle [grant number 50NA1615].

Fig. 1. The test vehicle used within AO-Car.

However, the development of autonomous systems is also
a key aspect in the design of deep space missions such as done
within the DLR projects KaNaRiA [4] and EnEx-CAUSE [5].
As precise maneuvers cannot be performed remotely due to
the long travel time of communication signals, there is a need
for highly intelligent and efficient systems. At the center of
these innovations is the computation of control commands
which, on the one hand, have to fulfill a number of optimal-
ity criteria and, on the other hand, are characterized by a high
degree of safety. These requirements can be met by solving
appropriate optimal control problems for the computation of
high-quality trajectories. Based on the ESA solver WORHP
[6] for nonlinear optimization problems and the correspond-
ing transcription method TransWORHP [7], this has proven
to be a very successful approach, for example within the sim-
ulated environments of KaNaRiA [8] and EnEx-CAUSE [9].

The same algorithms are applied to autonomous driving
within the scope of the project AO-Car, handling the exem-
plary task of exploring a parking lot. As a result, these tech-
nologies become publicly available and a framework for their
improvement through real-world testing is provided. Diverse
situations such as turning, overtaking, controlled stopping or
parking are all reduced to a single optimal control problem.
Its successive solution results in a nonlinear model predic-
tive control (NMPC) approach, which is presented in the fol-
lowing. The safety and efficiency of the proposed method is
demonstrated by experiments on the VW Passat GTE shown
in Figure 1.



2. RELATED WORK

Most approaches to the computation of vehicle controls are
limited to a specific range of applications. Algorithms for
lane keeping use the evaluation of camera images to compute
control commands through deep learning [10] or deep rein-
forcement learning [11]. Other methods strongly rely on a
predefined path which is then tracked. This can be realized
with a Riccati controller [12] or by using an MPC approach
which is either restricted to the lateral movement [13] or takes
full control of the vehicle [14, 15, 16]. A control concept for a
wide range of situations is presented in [17, 18], where offline
generated look-up tables are used as an initial guess for a fast
online optimization of the vehicle controls.

This work presents an online nonlinear MPC scheme for
full control of an autonomous vehicle independent of a pre-
defined path. Based on the continuous definition of target po-
sitions, this approach is capable of handling a great variety
of situations through its general description of the underlying
problem.

3. TRAJECTORY PLANNING AND CONTROL
APPROACH

In order to calculate control commands for the vehicle, every
possible scenario is traced back to one uniform task: Trans-
fer the vehicle from state A to state B respecting its dynamics
without any collision and minimizing an individual optimiza-
tion criterion. This allows each maneuver to be formulated as
an optimal control problem with process time T of the form

min
z,u,T

J(z, u, T )

s.t. ż(t) = f(z(t), u(t)),

z(0) = z0, z(T ) = zT ,

zmin ≤ z(t) ≤ zmax,

umin ≤ u(t) ≤ umax,

C(z(t), u(t), t) ≤ 0 for all t ∈ [0, T ].

(OCP)

The objective J , states z, controls u, constraints C and dy-
namics f with

J ∈ C1(Rn × Rm × R,R),
z ∈ C1([0, T ],Rn),
u ∈ C0([0, T ],Rm),

C ∈ C1(Rn × Rm × R,Rc),
f ∈ C1(Rn × Rm,Rn),

specify the behavior of the system.
For applications on a parking lot, only speeds below

20 km/h must be taken into account. Therefore we do not
expect large forces in interaction with the vehicle and choose
a kinematic single track model [19] to describe the dynamic
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Fig. 2. Kinematic single track model.

behavior. Within this modeling approach the front and rear
wheels are respectively combined to single wheels. Figure 2
displays the components of the utilized model.

The states x, y and v = ‖~v‖ represent the global position
and the speed of a reference point at the center of the rear
axle. The length of the wheelbase is given by L. The angle
ψ describes the vehicles orientation and is influenced by its
steering angle δ. The first and second derivative of the latter
are the steering angle velocity ωδ and steering angle accel-
eration aδ . The speed is affected by the acceleration a and
its derivative, the jerk j. By geometric considerations one can
derive a first order system of differential equations to describe
the vehicle dynamics, given as

ẋ = v · cos(ψ), ψ̇ = v · tan(δ)
L

,

ẏ = v · sin(ψ), δ̇ = ωδ,

v̇ = a, ω̇δ = aδ,

ȧ = j.

3.1. Objective Function

The aim of the trajectory planning is to ensure comfortable,
efficient and above all safe driving. To provide smooth con-
trols, we include acceleration, jerk, steering angle velocity
and steering angle acceleration in the objective function. Fur-
thermore we consider the term v(t)− vset to keep the vehicle
on a desired speed of vset ≥ 0 km/h. Including the process
time T , this leads to the objective

J̃(z, u, T ) :=w0T +

∫ T

0

w1ωδ
2 + w2a

2 + w3j
2 + w4aδ

2dt

+

∫ T

0

w5(v − vset)
2dt.
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Fig. 3. Region of interest based on the positions of both the
vehicle (blue) and the target (gray).

If the current target state specifies a final speed of vT = 0 km/h,
deviations from the desired values xT , yT , ψT and δT are pe-
nalized by

JT (z, u, T ) :=w6(x(T )− xT )2 + w7(y(T )− yT )2

+ w8(ψ(T )− ψT )2 + w9(δ(T )− δT )2.

In the opposite case of non-stop driving (vT > 0 km/h) the
weights w6, . . . , w9 will be set to zero and we force

x(T ) ∈ [xT − εx, xT + εx],

y(T ) ∈ [yT − εy, yT + εy],

ψ(T ) ∈ [ψT − εψ, ψT + εψ],

δ(T ) ∈ [δT − εδ, δT + εδ],

with small approximation tolerances εx, εy, εψ, εδ > 0. The
overall objective function

J(z, u, T ) = J̃(z, u, T ) + JT (z, u, T )

comprises all these criteria which are partially conflicting
with each other. Therefore the result is a compromise. De-
pending on the scenario, an appropriate weighting is se-
lected. This offers the possibility of a uniform formulation
and solution for a large variety of situations with different
requirements.

3.2. Constraints

Limitations of states and controls for comfort reasons as well
as physical limits are considered by

vmin ≤ v ≤ vmax,
amin ≤ a ≤ amax,
δmin ≤ δ ≤ δmax,
ωδmin ≤ ωδ ≤ ωδmax .

(a) c© GEO-BASIS/BKG 2009. (b) Predefined restrictions.

Fig. 4. Parking lot for conducting the exploration experiments
(left) and the resulting prior knowledge about its geometry
(right).

Fig. 5. Comparison of different feasibility polygons. Upper
row: without consideration of obstacles; lower row: including
predefined restrictions of the parking lot as well as detected
obstacles.

The function C in (OCP) takes further restrictions into ac-
count, such as collision avoidance. For this, the feasible re-
gion with respect to the states x and y is provided by a poly-
gon. Furthermore, the expansion of the vehicle in the XY -
plane is approximated by four circles covering the entire body
including the exterior mirrors and a safety distance, as demon-
strated in Figure 3. With this, the collision avoidance within
C is implemented by forcing the circles to be inside of the
feasibility polygon.

For the construction of the latter, a region of interest with
respect to the vehicle and target position is defined as the
union of circle segments with different radii, as shown in Fig-
ure 3. The two main segments are based on the distance be-
tween vehicle and target position defining the radius of the
circles. Furthermore, they are considered to have an opening
angle of 2α in the direction of the respective other position.
In addition to that, around both locations a second circle is
constructed with a smaller size. Finally, the region of inter-
est results from the union of the four segments. This is then
adapted to the perceived map of obstacles by a ray casting



approach, resulting in the feasibility polygon. The map con-
sists of predefined restrictions of the parking lot, as shown in
Figure 4, as well as obstacles detected at runtime. In case of
entering a parking space, the boundaries of the lane are not
considered. Examples of feasibility polygons during the ex-
ploration of the parking lot are provided in Figure 5.

3.3. Solution of the OCP

Most optimal control problems of the form (OCP) cannot be
solved analytically. However, there are two ways to address
them numerically: indirect and direct methods. With the for-
mer approach, (OCP) is transformed into a boundary value
problem according to Pontryagin’s maximum principle. This
is usually difficult to solve as a very good initial guess is re-
quired which is hard to find for the corresponding adjoints.
Within the direct approach, the optimal control problem is
discretized in time and then transformed into a nonlinear op-
timization problem of the form

min
x∈RN

F (x)

s.t. G(x) ≤ 0,
(NLP)

where F : RN → R and G : RN → RM . These prob-
lems are well studied and can be addressed with the ESA NLP
solver WORHP [6]. This software is designed to efficiently
solve huge problems (up to millions of variables) in a short
amount of time and it is successfully applied to a wide range
of (space) applications (including [8, 20]). The underlying
SQP algorithm takes advantage of the sparsity of the gradi-
ent, Jacobian and Hessian to accelerate the calculation.

This makes optimal control problems ideally suited to
be solved with WORHP, since the matrices occurring due to
the discretization of their dynamics are usually highly sparse.
The transcription of (OCP) to (NLP) is performed by the soft-
ware library TransWORHP [7] which uses direct approaches
like the trapezoidal method, multiple shooting techniques or
pseudospectral methods.

3.4. Initial Guess

To find an optimal solution, the OCP solver requires a suit-
able initial guess for all states, controls and the process time.
For this we use Reeds-Shepp paths [21] for most of the states.
These result in the shortest path between two poses with re-
spect to a combination of different segment types, consist-
ing of circular arcs of a fixed radius and tangents connecting
them. Figure 6 shows two examples of Reeds-Shepp paths.
Based on the resulting shortest path, we determine matching
values for the acceleration a and the corresponding process
time T in an analytic way. Depending on the respective direc-
tion of travel, the maximum (minimum) possible acceleration
is applied until the maximum (minimum) permissible speed is
reached. Finally this results in profiles for a and the steering
angle δ, from which the speed v, the coordinates x and y as

Fig. 6. Examples of Reeds-Shepp paths.
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Fig. 7. Acceleration a and steering angle δ resulting from the
Reeds-Shepp paths in Figure 6.

well as the orientation ψ can be deduced. The corresponding
profiles of a and δ for the paths from Figure 6 are shown in
Figure 7. As one can see, a and δ are discontinuous; since
there are no better assumptions we use zero as initial guess
for their derivatives j as well as ωδ and αδ .

3.5. Nonlinear Model Predictive Control Approach

In order to ensure permanent optimality and to compensate
for disturbances, we repeatedly solve (OCP) using the meth-
ods of the preceding sections and only execute the first few
control values. Within this nonlinear model predictive con-
troller, the optimal solution of the previous step is used as
an initial guess for the next computation. Regarding the very
first optimization and in situations where no optimal solution
could be determined in the previous step, the Reeds-Shepp
approach for calculating an initial guess is used as described
in Section 3.4.

4. AUTONOMOUS PARKING LOT EXPLORATION

4.1. System Overview

We have tested our approach in various real-life scenarios that
occur during the exploration of a parking lot with the modified
VW Passat GTE displayed in Figure 1. For that, the electric
motor was used in all tests. The control values (longitudi-
nal acceleration and steering angle) determined through our
method are transmitted to the actuators of the vehicle at a
frequency of 50Hz. All computations were carried out on



Fig. 8. Part of an exploration of the parking lot. Black dots
and lines: perceived obstacles and prior knowledge about the
parking lot. Gray line: actual path taken during the experi-
ment; red line: trajectory calculated by the model predictive
control algorithm at the current time step.

a Spectra Powerbox 1295 (Intel Core i7-5850EQ 2.7GHz,
8GB DDR3-RAM).

Our algorithms are provided with information from the
surroundings of the vehicle by forward and backward oriented
laser scanners, each consisting of four layers, and a set of ul-
trasonic sensors. Camera systems have not been used in any
way for our experiments. We utilize an INS/GNSS system
with an Extended Kalman Filter as described in [22] for lo-
calization and a real-time kinematic (RTK) system to correct
deviations in GNSS measurements.

During the practical realization, a superordinate algorithm
frequently determines a target position up to 15m ahead of
the vehicle. With model predictive control and in consider-
ation of obstacles we head for that target until an update is
given.

4.2. Experiments and Evaluation

We show the performance of the proposed control algorithm
for three situations: exploring a part of the parking lot, navi-
gating through a narrowing of the lane and parking. All these
scenarios are characterized by close proximity to obstacles
and thus by high demands on the accuracy of the controller.
The parking maneuver further requires a strong curvature of
the resulting trajectories.

The driven path while exploring the parking lot with non-
linear model predictive control is shown in Figure 8. In ad-

Fig. 9. Autonomous passing of a narrowing of the lane.

Fig. 10. Test vehicle driving through a narrowing of the lane.
Black dots and lines: perceived obstacles and prior knowl-
edge about the parking lot. Gray line: actual path taken dur-
ing the maneuver; red line: trajectory calculated by the model
predictive control algorithm at the current time step.

dition, the obstacles detected from the view point of the cur-
rent vehicle’s position as well as the visibility polygon are
displayed. At any time, the vehicle is able to maintain the
minimum safety distance represented by the circles shown in
blue. Furthermore the controller keeps the vehicle driving in
the center of the lane or, depending on the position of other
parked vehicles, slightly offset. Especially the turning ma-
neuvers meet high requirements in terms of precision.

More advanced situations like obstacle avoidance can be
evaluated by narrowing the lane as shown in Figure 9. To
handle these conditions in a safe and comfortable way, the
target position is shifted from the center of the lane to the
opening of the narrowing as early as possible. This results
in very smooth paths for both the planned and the executed
trajectory as displayed in Figure 10. Conversely, only after
passing the obstacle the target position is shifted back to the
middle of the lane.

As soon as a free parking space has been detected, the
predefined restrictions of the lane are disregarded in the com-
putation of the feasibility polygon, see also Section 3.2. In-
stead, additional boundaries based on the geometry of the de-
tected parking space are considered. The upper left part of
Figure 11 shows the obstacle map used while exploring; the
resulting perception during the subsequent parking maneuver



Fig. 11. Test vehicle entering a parking space. Black dots
and lines: perceived obstacles and prior knowledge about the
parking lot. Gray line: actual path taken during the entry; red
line: trajectory calculated by the model predictive control al-
gorithm at the current time step; green box: detected parking
space.

is displayed in the remaining panels. At the beginning of
the maneuver, the positioning of the target includes a small
shift to the opposite side of the lane, as shown in the upper
right panel. This supports the vehicle to enter via a smooth
arc. Furthermore, the problem description is amended so that
strict constraints are replaced by penalty terms as described
in Section 3.1. Hence, while approaching the parking space,
the solutions of (OCP) do not fulfill strict requirements in the
deviation of x, y, ψ and δ with respect to the requested tar-
get state. However, at the final entry, a high precision of the
final state is enforced by the newly introduced boundary. As
a result, the orientation and position of the vehicle perfectly
matches the detected parking space after completion of the
maneuver. Figure 12 shows a snapshot of the autonomous
parking process.

All trajectories during the parking lot exploration, includ-
ing obstacle avoidance and parking, are computed on the ba-
sis of 21 discrete points in time. This results in a total of
190 variables subject to 308 constraints to be optimized in
each control step. In case no optimal or feasible solution was
found after 100ms we relax the problem by disregarding the
optimality criterion. Hence, only feasible solutions can be
obtained in this case. A computation is finally aborted as un-
acceptable if a maximum duration of 500ms is exceeded or
the SQP method terminates with an error. Table 1 summarizes
the computation times and further performance information.

The solution of a single (OCP) during the exploration
phase takes 33ms in average, resulting in a transmission of
about two control signals before a new solution is available.
Only a few computations did not lead to an optimal result,

Fig. 12. Autonomous entering of a parking space.

however most of them provide at least a feasible solution. In
case of the more challenging maneuver of driving through
a narrowing of the lane, the mean computation time of all
optimal solutions slightly increases to 35ms. In addition, the
rate of unacceptable solutions is higher.

The problem formulation based on the penalty approach
results in all solutions determined during parking being at
least feasible. However, in average the computations take
twice as long as in the case of ordinary exploration. Hence,
for a more reliable control when entering a parking space,
the time to compute a new trajectory should be significantly
reduced by further development of the algorithm. This also
addresses the noticeably larger standard deviation in compu-
tation times when executing more challenging maneuvers in
general. However, even in the case of an increased computing
time, reasonable control signals are available since an entire
trajectory is provided from the previous optimal solution.

Altogether, the method described reliably leads to a safe
control of the autonomous vehicle in all test cases. A video
containing the corresponding maneuvers is available at:
www.math.uni-bremen.de/zetem/aocar

Exploration Narrowing Parking
Mean computing time

optimal 33ms 35ms 70ms
non-optimal 104ms 251ms -
total 33ms 41ms 70ms

Standard deviation
optimal 11ms 19ms 49ms
non-optimal 121ms 169ms -
total 17ms 49ms 49ms

# Computations 2 486 750 480
# Optimal 2 462 725 468
# Not optimal (feasible) 18 9 12
# Not optimal (unacc.) 6 16 0

Rate of unacc. solutions 0.24% 2.13% 0%
# Relax 2 4 12

Table 1. Performance of the model predictive controller in
different scenarios.



5. CONCLUSION

We presented the software system for autonomously driving
vehicles developed as part of the project AO-Car and derived
from space applications. The need for optimal trajectories
for various types of maneuvers was attributed to a uniform
description through an optimal control problem. Based on its
frequent solution, a model predictive control algorithm was
introduced. This allows high-quality control commands to be
provided in a short computation time, taking into account both
arbitrary surroundings of the vehicle and a nonlinear model of
its dynamics. For the exemplary tasks of exploring a parking
lot, handling a narrowing of the lane and entering a parking
space, we have shown the versatility of the approach in the
field of autonomous driving.

A. APPENDIX

Physical parameters
wheelbase L 2.786m
min / max velocity vmin / vmax 0 km/h / 8 km/h
min / max acceleration amin / amax −2.5m/s2 / 2.5m/s2

min / max steer. angle δmin / δmax −0.55 rad / 0.55 rad
min / max steer. angle vel. ωδmin / ωδmax −0.3 rad/s / 0.3 rad/s

Weights in objective
process time w0 0.033
steering angle velocity w1 0.483
acceleration w2 0.483
jerk w3 0.5
steering angle acc. w4 0.1
keep velocity w5 0.1
x deviation w6 10
y deviation w7 10
ψ deviation w8 1
δ deviation w9 1

Tolerances in target state
x deviation εx 0.1
y deviation εy 0.1
ψ deviation εψ 0.2
δ deviation εδ 0.2

Overlapping circles
radius 1.30m

Polygon
opening angle α 0.975 rad

Optimization tolerances
optimality 10−6

feasibility 10−6

Table 2. Setting of the hyperparameters in the experiments.
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M. Echim, and C. Büskens, “Optimal control in au-
tonomous driving,” in Proceedings in Applied Mathe-
matics and Mechanics, 2017, vol. 17.

[21] J. A. Reeds and L. A. Shepp, “Optimal paths for a
car that goes both forwards and backwards.,” Pacific
J. Math., vol. 145, no. 2, pp. 367–393, 1990.

[22] J. Clemens and K. Schill, “Extended Kalman filter with
manifold state representation for navigating a maneuver-
able melting probe,” in 19th International Conference
on Information Fusion (FUSION). jul 2016, pp. 1789–
1796, IEEE.


