
SOLAR-SAIL TRANSFERS FROM INVARIANT OBJECTS TO L5 PERIODIC ORBITS

Alvaro Fernandez, Andrew F. Heaton, and Jeannette Heiligers

Delft University of Technology, Delft, The Netherlands,
NASA Marshall Space Flight Center, Huntsville, Alabama,
and Delft University of Technology, Delft, The Netherlands

ABSTRACT

The continuing development of solar-sail technology in com-
bination with the rising interest in a mission to the Sun-Earth
L5 point for heliophysics and the search for Trojan aster-
oids, raises the question of using solar sailing as the primary
propulsion method to enable such a mission. This paper there-
fore investigates a range of solar-sail transfers to the L5 point,
departing from different invariant objects in the neighbour-
hood of Earth: natural and solar-sail displaced equilibrium
points, families of periodic orbits and their associated stable
invariant manifolds. Also the arrival conditions are varied to
be either natural or solar-sail displaced periodic orbits around
the L5 point. The transfers are obtained using a hybridisa-
tion of different trajectory design techniques. First, a multi-
objective genetic algorithm is applied to obtain near-feasible
initial guesses, which are transformed into feasible transfers
using a differential correction method. Through a continu-
ation on the fixed time of flight, the differential corrector is
subsequently used to reduce the transfer time. As the differ-
ential corrector implements a stepwise constant control of the
solar-sail attitude, a pseudospectral optimisation method is fi-
nally taken at hand to obtain a smooth, continuous control
profile, to, if possible, further reduce the transfer time. This
approach results in fast solar-sail transfers between 396 and
1194 days, depending on the departure and arrival configu-
ration and the assumed solar-sail technology. These results
can serve as preliminary design solutions for a mission to the
Sun-Earth L5 point.

Index Terms— Solar sailing, libration points, L5 mis-
sion, genetic algorithm, differential correction, pseudospec-
tral optimisation.

1. INTRODUCTION

The equilateral libration points of the Sun-Earth system are of
interest for space missions related to space weather observa-
tions and the search for Trojan asteroids. Since these points
are stationary 60 degrees ahead and behind Earth, they pro-
vide observational access to regions of the Sun that are inac-
cessible from Earth or the L1 point. For example, the ACE
satellite at the L1 point allows the detection of geomagnetic

storms approximately one hour before they arrive on Earth.
A spacecraft at the equilateral points would enable a much
earlier prediction of such space weather. Furthermore, both
equilateral points (L4 and L5) are suitable for studying coro-
nal mass ejections (CMEs). However, only the L5 point is
useful for the study of corotating interaction regions as they
pass by the L5 point first and then Earth and the L4 region.
Additionally, a spacecraft at the L4 or L5 points enables a
side view of events like solar flares and CMEs which would
help in developing a better understanding of these events as
well as the magnetic reconnection that triggers them [1].

Besides for space weather observation missions, the equi-
lateral points are also of interest because of the potential pres-
ence of Trojan asteroids. Bodies in orbit around the L4 and
L5 points are likely to have been there for a long time due
to the stable character of orbits around the equilateral points.
The study of such bodies can therefore help in understanding
the formation of the Solar System. Trojan asteroids have been
found in orbit around the equilateral points of the Sun-Mars,
Sun-Earth, Sun-Jupiter, and Sun-Neptune systems as well as
in systems such as Saturn with some of its moons [2]. In
2010, NASA’s WISE spacecraft detected asteroid 2010TK7 at
the Sun-Earth L4 point. The fact that the STEREO spacecraft
visited both equilateral points a year before, in 2009, without
spotting asteroid 2010TK7 suggests that there could still be
other asteroids of small size or low albedo which have insofar
not been discovered [2].

Due to the clear scientific relevance of the L5 point, the
literature holds a range of studies on transfers to the trian-
gular points. For example, studies have shown the feasibil-
ity of transfers departing from 200 km altitude parking orbits
around Earth to specific periodic orbits around the L5 point.
These transfers require a ∆V in the order of 4 km/s, depend-
ing on the targeted periodic orbit and desired time of flight
[3, 4]. Solar sails are an excellent means to provide this high
∆V [5]. As an inexhaustible source of low thrust, it can sig-
nificantly decrease, if not completely remove, the need for
an onboard propellant. Moreover, Sood and Howell showed
how, by using the invariant manifolds of Lyapunov orbits in
combination with differential correction and optimisation, the
use of a solar sail decreases the total ∆V for such a mission
[6]. Alternatively, Farres, Heiligers and Miguel used Poincaré



sections and optimal control to compute solar-sail transfers
between the Sun-Earth collinear points and the regions of
practical stability around the equilateral libration points [7].

This paper builds on, and generalises, previous work on
solar-sail transfers to the Sun-Earth L5 point. In particular,
a versatile approach is adopted to obtain solar-sail transfers
departing from a range of invariant objects in the neighbour-
hood of Earth to entire families of L5 periodic orbits. The
invariant objects considered are equilibrium points, periodic
orbits and their associated stable invariant manifolds. While
previous work mostly focused on the planar, two-dimensional
case and targeted specific initial and final conditions (e.g., a
specific Earth parking orbit or a specific L5 point orbit), this
paper considers the three-dimensional case as well as entire
families of periodic orbits for both the initial and final condi-
tions.

2. DYNAMICAL SYSTEM

In order to model the motion of the solar-sail propelled space-
craft (hereafter in short referred to as ”solar sail”), we con-
sider the Circular Restricted Three-Body problem (CR3BP)
perturbed with Solar Radiation Pressure (SRP). In such a
model, the Sun and the Earth (primary bodies) move in cir-
cular orbits around their common barycenter exclusively
attracting each other. The solar sail (third body) motion is
governed by the vector field induced by the gravitational pull
of the primaries and the SRP. The primaries are assumed to
be point masses and the solar sail is assumed to be a massless
point.

The units of mass, distance and time are normalised such
that the total mass of the system is 1, the Sun-Earth distance
is 1 and the orbital period of the Earth around the Sun is 2π.
With these normalised units, the gravitational parameter of
Earth is µ = 3.0034806 · 10−6 and the gravitational parame-
ter of the Sun is 1−µ. We consider a synodic reference frame,
s(X,Y, Z), to study the system, where the X axis is defined
along the Sun-Earth line pointing from the Sun to the Earth,
the Z axis is defined in the direction of the angular momen-
tum of the primaries and the Y axis completes the orthogonal
reference frame.

In frame s(X,Y, Z), the equations of motion can be ob-
tained by including the inertial and non-inertial forces as:

ẍ− 2ẏ =
∂Ω

∂x
+ ax, (1)

ÿ + 2ẋ =
∂Ω

∂y
+ ay, (2)

z̈ =
∂Ω

∂z
+ az, (3)

with Ω = 1
2

(
x2 + y2

)
+ 1−µ

rsb
+ µ
reb

, rsb =
√

(x+ µ)2 + y2 + z2

and reb =
√

(x+ µ− 1)2 + y2 + z2. The acceleration
generated by the solar sail is defined as the vector a =

[ax ay az] and it is produced by the transfer of momen-
tum when solar photons are reflected by the sail. In this
process, the properties of the sail and the solar flux determine
how the force is produced. For the initial analyses in this pa-
per, we assume a perfectly reflecting flat sail and a uniformly
radiating Sun. More complex models account for the optical
properties of the sail and geometry effects [5, 8, 9]. For an
ideal sail, the SRP acceleration acts along the direction of the
sail normal and is conveniently expressed as a function of the
lightness number β. This parameter is defined as the ratio
between the SRP and solar-gravitational accelerations [5].
The SRP acceleration can then be described in dimensionless
units as:

a = β
1− µ
r2sb
〈r̂sb,n〉2n, (4)

where r̂sb = rsb
rsb

and n is the sail normal.
In order to describe the attitude of the sail, we follow [10]

and define an orthonormal reference frame with its origin at
the solar sail and basis {r, p, q}, where p = r×k

|r×k|
and

q =
p×r
|p×r| . The vector k denotes the unit vector along the Z

axis. The sail normal can then be described in the orthonor-
mal frame by two angles known in the literature as the cone
angle α and the clock angle δ as n = cosαr+ sinα sin δp+
sinα cos δq. The equations of motion can then be expressed
as:

ẍ−2ẏ =
∂Ω̃

∂x
+a

(
− (x+ µ)z

rsbrp
sinα cos δ +

y

rp
sinα sin δ

)
,

(5)

ÿ+2ẋ =
∂Ω̃

∂y
+a

(
− yz

rsbrp
sinα cos δ − x+ µ

rp
sinα sin δ

)
,

(6)

z̈ =
∂Ω̃

∂z
+ a

(
rp
rsb

sinα cos δ

)
, (7)

where a = β 1−µ
r2sb

cos2 α, rp =
√

(x+ µ)2 + y2 and Ω̃ =
1
2

(
x2 + y2

)
+
(
1− β cos3 α

)
1−µ
rsb

+ µ
reb

. In the right-hand
side of equations 5-7 there are terms of two different nature.
The terms included in Ω̃ accept the form of a potential func-
tion. While the CR3BP is Hamiltonian, the SRP perturbation
breaks this property of the system, but a few exceptions ex-
ist. For the cases where the non-potential terms in the equa-
tions of motion vanish, the system remains Hamiltonian. This
happens when the sail normal is aligned with the direction of
the Sun-sail line (α = 0) and when the sail normal is per-
pendicular to the Sun-sail line (α = ±π). These cases are
of particular interest because the existence of periodic and
quasi-periodic motion around equilibrium points is guaran-
teed. Another important aspect of the dynamical system when
the Hamiltonian structure is preserved is the existence of a
first integral Jc = ẋ2 + ẏ2 + ż2 − 2Ω̃ [10]. This constant



of motion has important implications to characterise regions
of possible motion and energy levels of periodic and quasi-
periodic motion.

2.1. Invariant objects

Let us express Eqs. 5-7 as a system of first order differential
equations given by:

ẋ = f(x, α, δ), (8)

where x ∈ R6 is a point in phase space. Let us also de-
fine the flow induced by f as φt(x, α, δ) with t ∈ R. A set
S ⊂ R6 is invariant under the flow if for any element u ∈ S,
φt(u, α, δ) ∈ S for any t [11]. When the angles α and δ are
constant they act simply as parameters of the dynamics for
which invariant sets can be defined. A wide variety of invari-
ant sets exist in both the natural and SRP-CR3BP. Such sets
can exist in the form of equilibrium points, periodic orbits,
invariant manifolds or invariant tori. The first three will be
discussed in more detail below, while invariant tori will be
considered in future research.

2.1.1. Equilibrium points

It is well know that the CR3BP has five equilibrium points
known as the Lagrange points. It is also known that when SRP
is included, different families of equilibrium points emerge
[5, 10]. The surfaces of these so-called displaced equilibrium
points are given by the following problem [5]:

−∇Ω = β
1− µ
r2sb
〈r,n〉2n (9)

〈r,n〉 ≥ 0 (10)

Note that, when the sail is oriented perpendicular to the Sun-
sail line, the displaced equilibrium points reduce to the nat-
ural five Lagrange points. The displaced counterparts of the
Lagrange points are referred to as SLi with i ∈ [1, 2, .., 5].

2.1.2. Periodic orbits

When the dynamical system is Hamiltonian, both periodic
and quasi-periodic motion exist around the equilibrium
points. In fact, these types of motion generally appear in
continuous families. Numerous studies have used symmetric
properties of the system to compute such families of periodic
orbits in the natural system, e.g., [12, 13], and the SRP-
perturbed system, e.g., [14]. Such approach can only obtain
families of periodic orbits that present some symmetry. We
however do not exploit orbit symmetry to find periodic mo-
tion. A very general way to impose periodic motion is given
by the definition of the map G : R9 → R6 as [15]:

G(x, T, α, δ) = φT (x, α, δ)− x (11)

with x ∈ R6 and T ∈ R>0. Note that the sail attitude is
constant for each family of periodic orbits and therefore α
and δ are fixed parameters of the map G. The search of peri-
odic orbits is then transformed into finding {x, T} that solve
G(x, T, α, δ) = 0. Such solutions can be found with a New-
ton method given a good initial guess. Let us assume x̂ and
T̂ are a guess for a solution. It can be corrected by linearising
the periodicity equation and solving the linear system:

−G(x̂, T̂ , α, δ) = JG(x̂, T̂ , α, δ)

[
δx
δT

]
(12)

where JG denotes the Jacobian of G, and δx and δT denote
the updates to the initial guess. The derivative of φT (x, α, δ)
with respect to the initial point can be obtained with the
state transition matrix (STM) evaluated at time T denoted by
Φ(x, T, α, δ), yielding:

JG =
[
Φ(x, T, α, δ)− I6×6 f(φT (x, α, δ), α, δ)

]
, (13)

where I6×6 denotes the identity matrix. As can be seen, JG
is of size 6 × 7 and is therefore not invertible. However, it
is convenient to fix one of the components, xi, of x to have
control over what periodic orbit is computed. It is enough to
set its variation δxi to zero in Eq. 12, which is equivalent
to eliminating δxi from the updates vector and eliminating
column i from JG, yielding the reduced Jacobian J̃G. The
system can then be solved by inverting J̃G.

Given a solution {x∗, T ∗} for Eq. 11, continuation can
be used to generate the whole family of periodic orbits. We
choose to continue the family in the component xi of x. It
is possible to obtain the unit tangent direction for a family of
periodic orbits, t, as the unit Ker(JG(x∗, T ∗, α, δ)). The
new guess is then obtained as [16]:[

x̂

T̂

]
=

[
x∗

T ∗

]
+ δSt (14)

where δS is the step size in the continuation.
In order to implement this method for the generation of

families of periodic orbits, an initial guess is necessary. We
obtained these guesses from the linearised flow at the equilib-
rium points.

An important feature of periodic orbits is their stability
which can be assessed from the eigenvalues of the mon-
odromy matrix M , which is nothing else than Φ(x, T, α, δ)
for any point in a periodic orbit. Since the cases considered
here are Hamiltonian (α = 0 or α = ±π/2), the monodromy
matrix is symplectic. It can be shown that the characteristic
polynomial of any symplectic matrix is reciprocal and conse-
quently, the roots come in reciprocal pairs. Therefore, if λ is
an eigenvalue, λ−1 is also an eigenvalue. It can also be shown
that for periodic orbits in autonomous Hamiltonian systems,
one of the eigenvalues is equal to 1 with an associated eigen-
vector tangent to the orbit. Since the eigenvalues come in



reciprocal pairs, the spectra of the monodromy matrix has the
form [17]:

spec(M) = {1, 1, λ1, λ−11 , λ2, λ
−1
2 }. (15)

The stability indices are then defined as si = |λi+λ−1i |. With
such definition, the behaviour around a periodic orbit can be
described as:

• Hyperbolic: si > 2.

• Elliptic: si < 2. When si = 2 it is said to be parabolic.

• Complex unstable: if λi ∈ C\R

A periodic orbit is said to be stable if si ≤ 2 [18].
In this paper we consider only the planar Lyapunov, the

vertical Lyapunov and the halo families, but several other ex-
ist. As a first example, Fig. 1 shows the planar Lyapunov
family around the SL1 point for β = 0.02 and the stability in-
dices throughout the family. The values of the Jacobi constant
for the smallest and biggest orbits have also been included for
all families of periodic orbits presented. Since s1 > 2 for the
whole family, these orbits are unstable. However, the s2 index
shows that there is a set of more stable periodic orbits when
s2 = 2. For the vertical Lyapunov family depicted in Fig. 2,
it can be seen that, again, s2 = 2 for a set of orbits. The halo
family and its stability indices shown in Fig. 3 show a range
of orbits where both s1 = 2 and s2 = 2, therefore indicating
that a few stable halo orbits exist. Lastly, the planar Lyapunov
family around SL5 and its stability indices depicted in Fig. 4
show these orbits are stable, as both indices are parabolic.

Fig. 1. Planar Lyapunov family around the L1 point for β =
0.02 (top) and its stability indices (bottom).

Fig. 2. Vertical Lyapunov family around the L1 point for β =
0.02 (top) and its stability indices (bottom)

Fig. 3. Northern halo family around theL1 point for β = 0.02
(top) and its stability indices (bottom)

2.1.3. Invariant manifolds

Let us assume x0 is a fixed (equilibrium) point of the non-
linear system given by Eq. 8. The stable and center manifold
theorems guarantee, under certain conditions, the existence
of the stable manifold W s, the unstable manifold Wu and
the center manifol W c; all of which are invariant under the
flow. Such manifolds are tangent at x0 to the stable, unstable



Fig. 4. Planar Lyapunov family around the SL5 point for
β = 0.02 (top) and its stability indices (bottom)

and center subspaces given by the stable, unstable and center
directions of the linearisation of the non-linear system [11].
There also exist the stable and center manifold theorems for
periodic orbits. In that case the invariant manifolds are tan-
gent at the periodic orbit to the stable, unstable and center sub-
spaces which are obtained from the linearisation of the flow
around the cycle after one period, i.e., the monodromy ma-
trix [11]. In this study, both the stable and unstable manifolds
associated to fixed points or periodic orbits are used. Numer-
ically, these invariant manifolds can be obtained by propagat-
ing the flow from an equilibrium point or a periodic orbit per-
turbed in the corresponding stable or unstable direction. The
size of the perturbation selected is 10−5 dimensionless units.

3. TRAJECTORY DESIGN

3.1. Genetic algorithm

A genetic algorithm (implemented using the Matlab R© func-
tion ga.m) is taken at hand to solve a multi-objective optimi-
sation problem in which a set of decision variables defines
a guess for the transfer and the quality of that guess is as-
sessed in terms of its infeasibility, εI , and the time of flight
(TOF). Note that the decision variables vary depending on the
case, i.e., the type of invariant object used as initial condition,
which will each be discussed below.

3.1.1. Departure from collinear equilibrium points

If the initial condition is a natural collinear equilibrium point
(L1 orL2) or a solar-sail displaced collinear equilibrium point

(SL1 or SL2), the vector of decision variables, x, is defined
as:

x = [df τf αf ] (16)

Given a family of periodic orbits around the L5 point, the
first variable, df , determines the dimensionless size of the pe-
riodic orbit as the largest distance from the periodic orbit to
it associated equilibrium point; the L5 or SL5 points for this
case. This variable allows to target transfers to entire fami-
lies of orbits, as opposed to works that target one particular
periodic orbit [4, 6]. The second variable, τf , determines the
insertion point into the orbit which is obtained from propa-
gating the flow over a time τfT , where T is the periodic orbit
period, starting from some reference point. Finally, a third
variable, αf , determines the constant cone angle of the sail
which is used in the backwards integration from the insertion
point over a five year period. Figure 5 depicts these variables
and their effect on the trajectory.

The unstable manifolds originating from the (displaced)
collinear equilibrium points are also integrated over a five
year period, only forwards in time. However, note that these
unstable manifolds enter a complex region around Earth for
the natural Lagrange points [7] which can cause issues in the
adopted approach. Therefore, for such cases, the trajectory
starts from the equilibrium points perturbed in the direction
of the unstable manifold but including a solar-sail acceler-
ation where the solar sail is pitched at a fixed, zero degree
angle with respect to the incoming solar radiation. It can be
shown that with such an attitude and the solar-sail technology
considered, the spacecraft diverts away from Earth.

The initial guess transfer is then given by the union of the
unstable manifold of the (displaced) equilibrium point and the
backwards flow from the periodic orbit at the point of min-
imum euclidean norm in dimensionless phase space. This
value is used as the infeasibility objective, εI . Together with
the corresponding time of flight, the genetic algorithm creates
a Pareto front that gives a range of potential initial guesses
that vary in feasibility and time of flight. Ideally, the initial
guess selected for the next steps of the trajectory design pro-
cess is the guess which is sufficiently feasible and has the
smallest time of flight, where, by sufficiently feasible, it is
meant that the differential correction can converge to a feasi-
ble solution from the initial guess.

As an example, Fig. 6 shows the selected initial guess for
a transfer from the natural L1 point to an L5 solar-sail natural
planar Lyapunov orbit for β = 0.02. Note that near-term val-
ues for this lightness number are β ≤ 0.04 [19]. In terms of
objective values, the initial guess in Fig. 6 achieves a feasibil-
ity of εI = 0.0344, which corresponds to an error in position
of 2.15 · 106 km and an error in synodic velocity of 0.9292
km/s. The time of flight equals TOF = 738 days, while the
values for the decision variables are: x = [df τf αf ] =
[0.1858 0.3227 28.89], where αf is given in degrees.



Fig. 5. Schematic of genetic algorithm decision vector vari-
ables.

3.1.2. Departure from periodic orbits around collinear libra-
tion points

When the departing invariant object is a periodic orbit around
the L1, L2, SL1 or SL2 points, the decision vector in Eq. 16
is expanded to:

x = [d0 τ0 df τf αf δf ]. (17)

Equation 17 now also includes decision variables to select the
best size of the departing orbit, d0, and the best departure con-
dition along that orbit, τ0. Furthermore, if the departing peri-
odic orbit is a three-dimensional orbit, the angle δf considers
a solar-sail attitude component in the out-of-plane direction
in the backwards propagation from the L5 point.

Since the periodic orbits around the collinear equilibrium
points are unstable, they have associated unstable manifolds.
The decision vector expressed in Eq. 17 defines a departure
periodic orbit and the departing point. The branch of the un-
stable manifold that corresponds to the periodic orbit at the
departure point is propagated for a five year period—The ini-
tial guess is then again obtained as the union of the described
branch of the unstable manifold of the periodic orbit and the
backwards flow from the periodic orbit around L5 at the point
of minimum euclidean norm in dimensionless phase space.

The unstable manifolds of the natural periodic orbits
around the collinear equilibrium points do not present the
complex region around Earth as the manifolds associated to
the natural collinear equilibrium points do. Nevertheless, the
initial guesses benefit, in terms of TOF, from using the sail at
a zero degree angle with respect to the incoming solar flux.
Therefore, the approach described for the unstable manifolds

Fig. 6. Example of initial guess obtained with the genetic
algorithm for a transfer from the natural L1 point to L5 solar-
sail Lyapunov orbits with β = 0.02.

of the collinear Lagrange points is also adopted for the un-
stable manifolds of natural periodic orbits. When departing
from solar-sail periodic orbits, their associated unstable man-
ifolds already have a sail attitude aligned with the incoming
flux. Therefore the real unstable manifolds are used.

3.1.3. Departure from periodic orbits’ stable manifold

The final case considered is the one where the solar-sail
spacecraft is assumed to be launched as a secondary payload
on a mission were the primary spacecraft is injected onto the
branch of the stable manifold of a particular halo orbit around
the L1 point that passes closest to Earth. It is further assumed
that the solar sail is deployed at some point along that stable
manifold. The vector of decision variables then is:

x = [τ0 α0 δ0 df τf αf δf ] (18)

where τ0 determines the departing conditions along the
branch of the stable manifold of the halo orbit; if Tp is
the transfer time for the primary spacecraft along the stable
manifold, the solar sail is deployed at τ0T . The variables α0

and δ0 are the cone and clock angle for the segment departing
from the stable manifold of the periodic orbit which is again
propagated for five years. The remaining variables are analo-
gous to the ones described in the previous cases. Note that δ0
and δf are only used if the problem considered is not planar.



3.2. Multiple shooting differential corrector

The transfers obtained with the genetic algorithm are not yet
feasible nor time-optimal. We use a multiple shooting dif-
ferential corrector to first obtain feasible trajectories and then
reduce the time of flight.

First, the guesses are discretised on n = 30 nodes. Each
node contains a point in phase space, a cone angle, a clock
angle and a propagation time. They can be expressed as:

Xi =


xi
αi
δi
ti

 for i ∈ [1, 2, ...n] (19)

A feasible trajectory for a given TOF, T0, with constraints g0
and gf on the initial and final nodes is obtained as the solution
to the following problem:

g0(X1) = 0 (20)

φti(xi, αi, δi)− xi+1 = 0 for i = {1, 2, ...n− 1} (21)

gf (Xn) = 0 (22)

n−1∑
i=1

ti − T0 = 0 (23)

The constraints g0 and gf depend on the departure and arrival
conditions selected. We can rewrite Eqs. 20-23 as S (X) =

0, with X = [XT
1 ,X

T
2 , ...X

T
n ]T . Then, an initial guess X̂

can be updated by solving the linear system:

− S(X̂) = JS(X̂)δX, (24)

where JS(X) =

Jg0(X1) 0 · · · · · · · · · · · · 0

Φ̃1 f1 −E 0 · · · · · · 0

0 Φ̃2 f2 −E 0 · · · 0
...

. . . . . . . . . . . . . . .
...

0 · · · · · · Φ̃n−2 fn−2 −E 0

0 · · · · · · · · · Φ̃n−1 fn−1 −E
0 · · · · · · · · · · · · · · · Jgf (Xn)
u · · · · · · · · · · · · u 0


,

(25)
with fi = f(φti(xi, αi, δi), αi, δi), E = [I6×6 06×3], u =
[01×8 1] and Φ̃i = Φ̃(xi, ti, αi, δi). The 6 × 8 matrix Φ̃ is
an expanded STM that includes the variation of φti(xi, αi, δi)
with respect to αi and δi, i.e., Φ̃ = [Φ ∂φt

∂α
∂φt

∂δ ] [6].

3.2.1. Transfers considering fixed periodic orbits

Let us assume we want to fix node X1 or Xn to lie on a
specific periodic orbit. Such periodic orbit can be described
by a phase space point x0, a period T and cone and clock

angles α and δ, respectively. Then the node Xi with i = 1, n
needs to satisfy:

Ḡ(xi, t, α, δ) = φt(x0, α, δ)− xi = 0, (26)

for some t ∈ [0, T ). If such constraint is implemented for the
initial point, the initial node needs to be expanded to include
the variable t that needs to be solved in the problem. If the
constraint is for the last node, no expansion is needed as tn
can be used for the unknown t. Lastly, the Jacobian of Ḡ
needed for the Newton method can be obtained as:

JḠ = [−I6×6 f(φt(x0, α, δ), α, δ)] (27)

3.2.2. Transfers between a collinear equilibrium point and
families of periodic orbits around L5

This case is equivalent to fixing x1 to the desired departure
collinear equilibrium point xfixed and imposing the con-
straint given by Eq. 11 to Xn. Consequently,

g0(X1) = x1 − xfixed, (28)

gf (Xn) = G(xn, tn, αn, δn) (29)

Note that for the constraint on the final node, tn is the period
of a periodic orbit and αn and δn for the targeted family are
kept constant by setting their variation to zero, i.e., eliminat-
ing the columns associated to αn and δn in Eq. 25. If Xn

defines a periodic orbit from an specific family, the constraint
given by Eq. 29 will generally set the last node to orbits be-
longing to that family. Since the families are continuous, the
case where gf sets the last node to a family of periodic orbits
different from the one used for the initial guess is unlikely un-
less the periodic orbit of the initial guess is close enough to a
bifurcation point.

3.2.3. Transfers between families of periodic orbits

If the initial point, x1 is constrained to be on a periodic orbit,
the variables for the initial node, X1, as they appear in Eq.
19 are not sufficient to define the departing periodic orbit. It
could be possible to expand X1 with an extra variable, T1,
which would be the period of the initial periodic orbit, and
impose Eq. 11 to the initial node in a similar way as was done
for the last node with Eq. 29. However, this does not work
well in practice because the departing periodic orbits con-
sidered are generally unstable and the proposed differential
corrector would have difficulties converging to fast transfers.
Therefore, in order to be able to let the initial node belong
to a family of unstable periodic orbits around the collinear
equilibrium points, a more robust periodicity constraint is im-
plemented. Let us consider a set defined by a point x, a time
variable T and fixed cone and clock angles α and δ respec-
tively. The complete set can be expressed as:

Γ = {y : φt(x, α, δ)− y = 0 for t ∈ [0, T )}. (30)



Then, the set Γ defines a periodic orbit if for any v ∈ Γ,
G(v, T, α, δ) = 0. This can be expressed as:

G̃(x, T, t, α, δ) = φT (φt(x, α, δ)α, δ)− φt(x, α, δ) = 0,

(31)

with t ∈ [0, T ). Equation 31 is a more robust periodicity
constraint as it allows to impose periodicity not at x but at
φt(x, α, δ). By the theorem of existence and uniqueness of
differential equations [11], if φt(x, α, δ) belongs to a peri-
odic orbit, so will x. This method can be successfully imple-
mented in the differential corrector.

In order to solve the problem, the initial and final nodes
need to be expanded to:

X̃1 =



α0

δ0
t̃1
T1
x1

α1

δ1
t1


, X̃n =


x1

αn
δn
tn
t̃n

 . (32)

The constraints on the initial and final node are then:

g0(X̃1) = G̃(x1, T1, t̃1, α0, δ0) = 0, (33)

gf (X̃n) = G̃(xn, tn, t̃n, αn, δn) = 0. (34)

Note that in Eqs. 33 and 34, the attitude of the sail in the
targeted periodic orbits are fixed and therefore the Jacobian of
the multiple shooting problem given in Eq. 25 can be reduced
by removing the corresponding columns. To include the new
periodicity constraints, the Jacobian of G̃ is needed for the
Newton method and it can be expressed as:

JG̃ = [(Φ(T, φt(x, α, δ), α, δ)− I6×6)Φ(t,x, α, δ)

f(φT (φt(x, α, δ), α, δ))

(Φ(T, φt(x, α, δ), α, δ)− I6×6)f(φt(x, α, δ), α, δ)]

(35)

Note, that in section 3.2.2, the constraint G could be used
to set the final node on a family of periodic orbits. This is
possible only because such orbits are stable. The constraint
G̃ can also be used in such transfers, but the results obtained
are almost identical.

3.2.4. Transfers between the stable manifold of an orbit and
families of periodic orbits

This case corresponds to the scenario where the solar sail is
launched as a secondary payload and the primary spacecraft is
injected into the stable manifold of an orbit around a collinear
equilibrium points. The multiple shooting differential correc-
tor is described for the general case, but here only the case
where the primary spacecraft targets a halo orbit around the
L1 point is considered.

The constraint Ḡ in equation 26 can be used as the con-
straint on the initial node. However, the point x0 that de-
fined the fixed periodic orbit corresponds to the closest point
to Earth of the selected branch of the stable manifold of the
selected orbit, and α and δ are the cone and clock angles for
the selected periodic orbit of the primary mission. Again, X1

in Eq. 19 needs to be expanded to include the unknown t, i.e.,
the dimensionless time spent on the branch of the stable man-
ifold. For the constraint on the final node, gf , bothG (Eq. 29)
and G̃ (Eq. 31) can be used. However, we choose the stronger
periodicity constraint G̃.

3.2.5. Optimisation with the multiple shooting differential
corrector

So far, the differential corrector described will compute trans-
fers for the cases discussed at a given TOF. In order to opti-
mise the transfers, first the initial guess given by the genetic
algorithm is converged with the differential corrector to a fea-
sible trajectory with the TOF, T0, of the initial guess. This
solution is then used to compute a new solution for a TOF=
κT0, with κ < 1. This process is iterated until the differen-
tial corrector cannot converge. Then the factor κ can be in-
creased to give smaller steps in the continuation. We use κ ∈
[0.95 0.98 0.99 0.999 0.9995 0.9999 0.99999].

3.3. Optimal control solver PSOPT

The transfers obtained with the differential corrector are not
necessarily optimal in the sense that the optimality conditions
of the problem under consideration have not been checked
or used to compute the solution. Therefore, we use the op-
timal control solver PSOPT, which is a C++ implementation
of the direct Legendre pseudospectral method in C++ [20].
We set the objective as the TOF and include event constraints
on the initial and final nodes. When the departing point is a
collinear equilibrium point, the event constraint is defined by
simply setting the initial node equal to the desired departing
collinear equilibrium point. When the initial or final node are
constrained to belong to a periodic orbit, we take the orbit
given by the differential corrector, express it in a Fourier se-
ries and set the node to satisfy such series for some value of
the angle that parameterises it. This angle is optimised as an
static parameter in PSOPT.

4. RESULTS

We first apply the methodology described for transfers be-
tween the collinear equilibrium points and natural and solar
sail families of planar periodic orbits (POs) around the L5

point. This results in the time of flights for the differential
correction + continuation (DC) and PSOPT approaches as in
Table 1 for a range of lightness numbers.



Table 1. TOF in days for transfers from the collinear equilibrium points to families of planar periodic orbits around the L5

point
β = 0.01 β = 0.02 β = 0.03 β = 0.04 β = 0.05

Method DC PSOPT DC PSOPT DC PSOPT DC PSOPT DC PSOPT
L1→ natural PO 943 962 612 613 486 486 434 435 402 418
L1→ solar-sail PO 1094 1061 729 727 575 574 512 513 478 524
SL1→ natural PO 1094 1019 685 686 563 570 512 525 481 496
SL1→ solar-sail PO 1194 1136 801 803 651 664 589 605 555 611
L2→ natural PO 846 846 599 598 481 480 429 428 396 396
L2→ solar-sail PO 941 940 712 711 571 570 508 508 474 477
SL2→ natural PO 920 919 672 671 551 550 494 493 458 457
SL2→ solar-sail PO 1015 1014 784 783 642 647 575 574 509 494

When comparing the results obtained with the differential
corrector and with PSOPT, PSOPT sometimes converges to
slightly different transfer times for transfers starting from the
natural or displaced L1 points. This is mainly due to the fact
that the initial guesses for these cases include close Earth ap-
proaches or multi-revolution spirals around Earth, which in-
troduces convergence difficulties for both methods. The dif-
ferences are most noticeable for lightness numbers of 0.01
and 0.05. On the other hand, when the transfers depart from
the natural or displaced L2 points, both PSOPT and the dif-
ferential corrector converge to practically the same solution.

Generally, the optimised transfers with PSOPT are very
close to the ones obtained with the differential corrector +
continuation, indicating that PSOPT is not capable of fur-
ther reducing the TOF beyond that obtained with the differ-
ential correction + continuation. It is therefore concluded that
the differential corrector in combination with the continua-
tion method is an efficient tool to optimise the transfers con-
sidered. Therefore, from this point on, only the differential
corrector will be used to optimise the trajectories.

Table 2 shows the results obtained for transfers between
planar families of periodic orbits around the collinear equi-
librium points and the L5 point. The results show that it is
always faster to travel between families of natural periodic
orbits. When comparing the TOF for transfers departing at
the collinear equilibrium points and transfers departing from
families of periodic orbits around the fixed points, it can be
seen that for some cases, the differential corrector converges
to faster solutions when departing from an equilibrium point
than when departing from a planar Lyapunov periodic orbit
around it. Generally, both cases have very similar TOF with
the exception of the cases with β = 0.01. In these cases, de-
parting from periodic orbits can reduce the TOF by over 100
days. Figure 7 shows the TOF as a function of the lightness
number for transfers departing from both the collinear equi-
librium points (top) and from planar Lyapunov orbits around
them (bottom), where the suffix ”n” or ”s” denotes natural
and solar-sail orbits respectively, and the prefix ”L” denotes
departure from Lyapunov orbits. It is then clear that the higher
the lightness number, the lower the TOF. It can also be seen
that the improvement in TOF with respect to an improvement

in the sail performance decreases with increasing lightness
number.

Fig. 7. Time of flight as a function of the lightness number
for transfers departing from the collinear equilibrium points
(left) and from planar Lyapunov periodic orbits around them
(right).

To visualise the transfers, Fig. 8 shows the transfers for
three cases: departing from L1, departing from a natural pla-
nar Lyapunov orbit around L1 and departing from a natural
halo orbit around L1. In all three cases, the target orbits be-
long to the natural planar family around L5 and the sail per-
formance is assumed to be β = 0.02. The transfer from the
family of halo orbits has been included to demonstrate the
capability of the differential corrector for non-planar cases.
Figure 9 shows a three-dimensional close-up of the transfers
in the neighbourhood of Earth. The TOF for the three cases is
relatively similar.

The last case considered is when the solar sail is deployed



Table 2. TOF in days for transfers from families of planar periodic orbits around the collinear equilibrium points to families of
planar periodic orbits around the L5 point

β = 0.01 β = 0.02 β = 0.03 β = 0.04 β = 0.05
Natural POs around L1→ natural PO 862 622 483 433 404
Natural POs around L1→ solar-sail PO 978 728 580 513 476
Solar-sail POs around SL1→ natural PO 947 668 545 500 455
Solar-sail POs around SL1→ solar-sail PO 1041 804 641 576 525
Natural POs around L2→ natural PO 812 579 454 427 405
Natural POs around L2→ solar-sail PO 902 686 559 490 460
Solar-sail POs around SL2→ natural PO 908 684 546 500 456
Solar-sail POs around SL2→ solar-sail PO 920 672 551 494 458

Fig. 8. Transfers to natural periodic orbits around L5 depart-
ing from L1 and departing from a natural planar Lyapunov
and a natural halo orbit around it.

along the stable manifold, i.e., along the trajectory of the pri-
mary spacecraft towards a natural halo orbit. Such transfer
is assumed to be the branch of the stable manifold of the tar-
get halo orbit that passes closest by Earth. The assumed halo
orbit is characterised by a maximum dimensionless displace-
ment of 0.01 dimensionless length units from from L1, which
is equivalent to 1.49 million km. The departing point for the
primary mission is at 0.47 million km from Earth and with
an initial velocity of 1.15 km/s. It is further assumed that the
sail performance is β = 0.02. The TOF for the primary mis-
sion is 237 days. Figure 10 shows the transfer obtained with
the differential corrector and Fig. 11 shows a close-up in the
neighbourhood of Earth. The black arrows show the sail nor-
mal throughout the transfer. The TOF for the solar sail is 138
days for the first segment where the primary spacecraft goes
from the neighbourhood of Earth to the point of separation of
the solar sail and 652 days for the second segment where the
solar sail actively transfers to the L5 region

Fig. 9. Close-up of the transfers from Figure 8 in the neigh-
bourhood of Earth

5. CONCLUSIONS

We investigated solar sail transfers between invariant objects
in the neighbourhood of Earth and families of periodic orbits
around the L5 point. Initial guesses were computed with the
use of a genetic algorithm. Such guesses converge to feasi-
ble trajectories with a versatile multiple shooting differential
corrector which allows to consider whole families of periodic
orbits in the transfers. The multiple shooting differential cor-
rector in combination with a continuation method allows to
reduce the TOF of the transfers. Lastly, the optimal control
solver PSOPT was used to attempt to further optimise the tra-
jectories.

The results show that the genetic algorithm successfully
obtains sufficiently feasible transfers that can then converge
to feasible trajectories with the differential corrector. The
optimal control solver PSOPT generally obtains very similar
transfers to the ones obtained with the differential corrector +
continuation, proving the latter to be a powerful tool for the



Fig. 10. Transfer for the secondary payload case with β =
0.02

Fig. 11. Close-up in the neighbourhood of Earth for the trans-
fer shown in Fig. 10

problem under consideration. However, the control profile
used in the differential corrector is of constant step-wise cone
and clock angles, whereas PSOPT can offer a more continu-
ous profile. Furthermore, the novel methodology introduced
allows to consider fixed points, fixed periodic orbits, full fam-
ilies of periodic orbits and the stable manifold of orbits, show-
ing the versatility of the differential corrector approach.

Fast solar sail transfers taking between 396 and 1194
days, depending on the sail performance and the case, were

computed. For the range of lightness numbers explored, the
TOF decreases with increasing β. It was also seen that the
improvement in TOF with respect to the sail performance
decreases with increasing β. It was also seen that for most
cases, departing from periodic orbits was faster than when de-
parting from equilibrium points. This is specially true when
β = 0.01. However, for some cases the differential corrector
+ continuation converged to faster transfers when departing
from equilibrium points. It was seen that it is always faster
to travel between natural invariant objects than it is to travel
between solar-sail invariant objects.

6. FUTURE WORK

In this study we considered equilibrium points, periodic orbits
and their associated stable manifold as the invariant objects
involved in the transfers. However, invariant tori do exist and
they are also invariant objects in the CR3BP with and without
a solar sail. In future work, transfers between invariant tori
will be considered and also the effect of a non-ideal solar sail.
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