
REVISITING DESIGN ASPECTS OF A QP SOLVER FOR WORHP

Marcel Jacobse, Christof Büskens

University of Bremen
Center for Industrial Mathematics, WG Optimization and Optimal Control

Bibliothekstraße 5, 28359 Bremen, Germany
{mjacobse,bueskens}@math.uni-bremen.de

ABSTRACT

SQP methods for nonlinear programming rely on a quadratic
programming solver for computing a search direction in each
major iteration. From the start, the large scale NLP solver
WORHP has been using the interior point method QPSOL
within its SQP framework, which was developed specifically
for WORHP. Experience from usage of WORHP in many ar-
eas and development of features like sensitivity analysis and
feasibility refinement raised interest in a reworked, extended
interface between WORHP and its QP solver. Furthermore,
additional concepts like multiple centrality correctors seemed
promising for improving the overall performance.

Hence, a revised QP solver was designed and imple-
mented. Mehrotra’s algorithm that was implemented in
QPSOL was extended by Gondzio’s multiple centrality cor-
rectors and weighting of corrector steps was added. Special
care was taken to handle the very general NLP formula-
tion of WORHP efficiently, yielding a very general problem
formulation for standalone quadratic programming as well.
A clear interface was implemented for retrieving sensitiv-
ity derivatives from the quadratic solver directly, allowing
WORHP Zen and feasibility refinement procedures easy ac-
cess to them.

The paper deals with these algorithmic and interface as-
pects for the development of the new solver within WORHP.
Numerical results on the CUTEst test set for nonlinear pro-
gramming are presented to show the performance improve-
ments over the previous method.

Index Terms— Quadratic Programming, Nonlinear Pro-
gramming, Sequential Quadratic Programming, Solver De-
sign

1. INTRODUCTION

The numerical solution of nonlinear programming problems
is a common task arising in many applications, for example
as parameter identification or optimal control problems. The
nonlinear programming solver WORHP [1] solves large scale
problems of this type using the underlying quadratic solver
QPSOL [2]. Since its initial release, WORHP has been used

widely in many fields and was extended by several additional
features. As a result, there was a rise in opportunities and new
requirements for the old Fortran code of QPSOL. Therefore,
a reworked quadratic solver was designed and implemented
in C++.

In this paper, we discuss several issues regarding the im-
plementation of this new quadratic programming solver for
WORHP, which we will refer to as WORHP QP. In Section 2,
a brief summary of the role of quadratic programs within
WORHP’s solution algorithm is given. Solution methods for
quadratic programs are described, leading into a more de-
tailed description of interior point methods for quadratic pro-
gramming in Section 3. The algorithmic techniques that are
implemented in WORHP QP as an extension of QPSOL’s al-
gorithm are outlined. Section 4 deals with the improvements
to the quadratic problem formulation of the new solver. The
benefits of the implemented interface for sensitivity deriva-
tives of WORHP QP over QPSOL are explained in Section 5.
Finally, in Section 6 numerical results comparing WORHP
using the old versus the new quadratic solver are presented.

2. FUNDAMENTALS

WORHP solves nonlinear programming (NLP) problems
given in the form

min
x∈Rn

f(x)

subject to x ≤ x ≤ x
g ≤ g(x) ≤ g,

(1)

with an objective function f : Rn → R, a general constraint
function g : Rn → Rm and bounds

x ∈ (R ∪ {−∞})n , x ∈ (R ∪ {+∞})n

g ∈ (R ∪ {−∞})m , g ∈ (R ∪ {+∞})m .

By setting xi = xi or g
j

= gj for some i or j, equality con-
straints can be formulated. The distinction between simple
bounds on the variables x (also called box constraints) and
the general constraints given by g allows to handle the for-
mer more efficiently within the solver. Allowing lower, upper



and both bounded variables and constraints makes this for-
mulation quite general. As such, it is more user friendly than
equivalent formulations in which only certain types of bounds
are allowed, e.g. only g = {−∞}m and g = 0.

A sequential quadratic programming (SQP) method is
employed to solve these problems1. In each iteration k,
the nonlinear program (1) is approximated by the quadratic
program (QP)

min
d∈Rn

1

2
dTH [k]d+∇xf(x[k])

T
d

subject to x ≤ x[k] + d ≤ x

g ≤ g(x[k]) +∇xg(x[k])
T
d ≤ g

(2)

in whichH [k] is either the Hessian of the Lagrangian of prob-
lem (1) at the current iterate, or an approximation following
BFGS-type update methods. The solution of this quadratic
subproblem yields a search direction d[k] := d for the current
iterate x[k]. A line search along this search direction is then
employed to produce the next iterate

x[k+1] := x[k] + α[k]d[k] (3)

with a stepsize α[k] > 0 such that x[k+1] is in some sense su-
perior to the previous iterate x[k], e.g. with a smaller violation
of the constraints or a smaller objective function value. Merit
functions or a filter are used to establish such improvement for
the new iterate. Then, after incrementing the iteration counter
k, the next quadratic subproblem (2) has to be solved.

2.1. Solving the quadratic subproblem

Solving the quadratic program (2) is therefore a crucial part
of the SQP method. As WORHP follows the inequality-
constrained (IQP) instead of the equality-constrained (EQP)
approach [4], this quadratic program is in general inequality-
constrained. This requires much more sophisticated solution
methods compared to equality-constrained QPs for which
only a single linear equation system has to be solved. The
two methods that are mainly used are active set and interior
point methods.

Active set methods follow the idea that an inequality-
constrained QP could be treated like an equality-constrained
one if it was known, which inequality constraints are active,
i.e. meet their bounds exactly, at the optimal solution. As de-
scribed above, the solution would then come down to solving
a single linear equation system. Usually that active set is of
course not known in advance. Active set methods therefore
initially try to guess the optimal active set and treat active
inequality constraints as equality constraints by forcing them
to their bound while temporarily ignoring inactive inequality
constraints. In each iteration, the guess for the active set

1Recently, a new penalty interior point algorithm [3] was added to
WORHP, but in this paper we focus on the SQP algorithm.

is then updated by removing/adding inequality constraints
from/to the current guess in a clever way to eventually arrive
at the optimal active set and therefore the optimal solution.

Interior point methods on the other hand do not force a
partition of the inequality constraints into active and inactive
ones in every iteration. Instead, they approach the optimal
solution from the interior by perturbing the complementarity
condition which is closely related to the notion of activeness.
The active set is then gradually revealed throughout the itera-
tions by progressively decreasing the perturbation [5].

Most SQP methods use an active set solver for the
quadratic subproblems, as they can easily be warmstarted,
i.e. use the solution of a previous problem to solve a different,
but similar problem more efficiently. As long as successive
quadratic subproblems do not differ too much, this is very
beneficial within the SQP framework. Warmstarting an in-
terior point method on the other hand is somewhat difficult,
as the initial iterates have to be strictly positive. An optimal
iterate from a previous subproblem would have to be moved
back into the interior [6]. In turn, interior point methods have
a much better worst case iteration complexity and can make
use of efficient general purpose sparse Cholesky-like linear
equation solvers, whereas active set methods usually require
more sophisticated, specialized linear algebra routines in
order to be efficient [4].

WORHP uses the solver QPSOL which is an implemen-
tation of the well known primal-dual interior point method by
Mehrotra [7] to solve the quadratic subproblems.

3. INTERIOR POINT METHOD

QPSOL implements Mehrotra’s predictor-corrector method,
closely following OOQP [8]. For sake of simplicity, the ap-
proach is briefly described for the simplified quadratic prob-
lem formulation

min
x∈Rn

1

2
xTQx+ cTx

subject to Ax = b

x ≥ 0

(4)

with matrices Q ∈ Rn×n, A ∈ Rm×n and vectors c ∈ Rn
and b ∈ Rm. By perturbing the complementarity condition of
this problem with the barrier parameter µ > 0, we obtain the
optimality conditions for the barrier subproblem

Qx+ c+ATy − z = 0

Ax− b = 0

ZXe− µe = 0

as common for primal-dual interior point methods. The intro-
duced vectors y ∈ Rm and z ∈ Rn are the Lagrange multi-
pliers for the equality and inequality constraints respectively.
Here and in the following, e denotes a vector of ones with



appropriate size and for every vector v the uppercase letter V
means the diagonal matrix with the entries of v on its diago-
nal. Applying Newton’s method yields the equation systemQ AT 0

A 0 0
Z 0 X

∆x
∆y
∆z

 = −

Qx+ c+ATy − z
Ax− b

ZXe− µe

 (5)

for the Newton direction. Interior point methods calculate
such a step

(
∆x[k],∆y[k],∆z[k]

)
in each iteration k while

progressively decreasing the barrier parameter µ and there-
fore the perturbation in the complementarity condition. The
current iterates

(
x[k], y[k], z[k]

)
are then updated after deter-

mining a steplength multiplier α[k] ∈ (0, 1], such that the new
iterates

x[k+1] := x[k] + α[k]∆x[k]

y[k+1] := y[k] + α[k]∆y[k]

z[k+1] := z[k] + α[k]∆z[k]

still fulfill the required positivity conditions, i.e. x[k+1] > 0
and z[k+1] > 0.

Mehrotra’s predictor-corrector method constructs the step
∆[k] =

(
∆x[k],∆y[k],∆z[k]

)
as a combination of a predictor

and a corrector step and employs a heuristic for generating
a sequence of decreasing barrier parameters. Equation sys-
tem (5) is first solved for µ = 0 to get a predictor step

∆pred = (∆xpred,∆ypred,∆zpred) .

The maximum steplength αpred is determined such that the
current iterates updated by αpred∆pred remain positive. A tar-
get complementarity µtar is then chosen by the heuristic

µtar :=

(
µpred

µ[k]

)η
µ[k],

in which µ[k] := x[k]
T
z[k]/n is the current average comple-

mentarity product and

µpred :=

(
x[k] + αpred∆xpred

)T (
z[k] + αpred∆zpred

)
n

the predicted one. The exponent η is a parameter, commonly
chosen from the interval [2, 4]. System (5) is then solved for
the right hand side

−

 0
0

−µtare+ ∆Xpred∆Zprede

 (6)

to obtain the corrector step ∆corr. Predictor and corrector step
are then combined for the final step ∆[k] := ∆pred + ∆corr.
Many algorithmic summaries can be found in the literature,
for instance [8].

For the reworked solver, several extensions of Mehrotra’s
method were implemented.

3.1. Added extensions

Gondzio [9] proposes the use of multiple centrality correctors
that use an abritary amount of additional solves of system (5)
for different right hand sides to generate further corrector di-
rections.

As starting point, this technique takes the combined
Mehrotra predictor-corrector step as its initial predictor step
∆pred, with the determined maximum stepsize αpred that can
be taken in this direction. With the goal to increase the
maximum possible stepsize with another correction step, an
increased, aspired stepsize α̃ > αpred is chosen. For this
increased stepsize, intermediary iterates

x̃ := x[k] + α̃∆xpred and z̃ := z[k] + α̃∆zpred

are computed. Of course, these intermediary variables will
in general violate the non-negativity constraints x̃ ≥ 0 and
z̃ ≥ 0. To compensate, a corrector direction that aims to
reduce this violation needs to be computed. For this, a more
conservative target t ∈ Rn with

ti :=


γµtar if x̃iz̃i ≤ γµtar
1
γµtar if x̃iz̃i ≥ 1

γµtar

x̃iz̃i otherwise
for all i ∈ {1, . . . , n}

is chosen, compared to µtare in Mehrotra’s correction (6). The
parameter γ ∈ (0, 1) controls the size of the interval around
the target complementarity µtar that is projected onto. Sys-
tem (5) is then solved for the right hand side

−


0
0
0

X̃Z̃e− t

 ,

yielding the corrector direction ∆corr which is then combined
with the predictor step to the new, corrected step ∆ := ∆pred+
∆corr. Unlike Mehrotra’s correction, this correction can be
applied as often as desired, by treating ∆ as a new predictor
direction ∆pred again. A more detailed description is given in
[9].

Numerical results show that significant iteration savings
can be achieved and benefits for warmstarting can also be ob-
served [6]. Therefore, Gondzio’s correctors are already im-
plemented in many interior point solvers like HOPDM [9],
OOPS [6], OOQP [8] and sparse quadratic prog [10]
and now also in WORHP QP.

Colombo and Gondzio [11] suggest a further improvement
of the corrector scheme by introducing weighted correctors.
They motivate this based on observations that Mehrotra’s cor-
rector does not always improve the possible stepsize com-
pared to the predictor step, which is not unexpected as the
second order approximation is not necessarily sufficient to
follow the central path properly. Therefore, instead of adding



the full corrector step ∆corr to the previously determined pre-
dictor step ∆pred, a weight ω ∈ (0, 1] is used such that the
allowed stepsize α that can be taken with the combined direc-
tion

∆ := ∆pred + ω∆corr (7)

is maximized. As this would require the solution of a nontriv-
ial bi-level optimization problem, a simple line search strat-
egy is used to find an approximate ω. Weighting can be ap-
plied for Mehrotra’s corrector step, as well as for each itera-
tion of Gondzio’s centrality correctors by considering the cur-
rent combined step as the predictor step ∆pred in (7). Numer-
ical results in [11] show the benefits of this approach, so that
it was implemented in WORHP QP as well.

4. QUADRATIC PROBLEM FORMULATION

QPSOL takes problems of the form

min
x∈Rn

1

2
xTQx+ cTx

subject to x ≤ x ≤ x
Ax = b

Cx ≤ d.

(8)

Hence, general constraints with lower and upper bounds
cannot be handled directly and equality and inequality con-
straints are separated from each other. Furthermore, fixed
variables are not dealt with explicity, so if xi = xi for an
i ∈ {1, . . . , n}, the solver will employ two directly conflict-
ing logarithmic barrier terms which is quite problematic. As
described in Section 2, WORHP needs the solution of (2) in
every iteration, which has to be transformed into formula-
tion (8) so that it can be understood by QPSOL. Therefore, in
every iteration WORHP has to

1. split the Jacobian ∇xg(x[k])
T

into the equality and in-
equality constraint matrices A and C

2. duplicate all general inequality constraints with bounds
on both sides in C, i.e for a constraint

−∞ < g
i
≤ gi(x) ≤ gi <∞

we get the two constraints

gi(x
[k]) +∇xgi(x[k])

T
d ≤ gi

−gi(x[k])−∇xgi(x[k])
T
d ≤ −g

i

in the QP

3. create an extra equality constraint inA for all fixed vari-
ables xi = xi.

While 1. is mostly an inconvenience, the other two items also
increase the dimension and number of nonzeros in the system
matrix of the linear equation system which ultimately has to
be solved. That system is essentially (5), except for trans-
formations due to the different problem formulation (see [8]).
Performance can therefore directly suffer from the problem
formulation restrictions imposed by QPSOL.

The newly designed interface on the other hand allows to
formulate quadratic problems in the most general form

min
d∈Rn

1

2
xTQx+ cTx

subject to x ≤ x ≤ x
b ≤ Ax ≤ b

(9)

which directly resembles WORHP’s formulation and allows
to input (2) directly, without any transformations. This makes
the interface code between the NLP and the QP layer a lot
cleaner. However, the transformations that were done for
QPSOL in this code before have to be handled internally
within the new solver WORHP QP now. This interal han-
dling is described in the following.

4.1. Ordering

The ordering of the general constraints on the NLP layer is
kept for the QP. That way, sensitivities and multipliers stay
in the same order as well (see also Section 5). As a result,
the optimal Lagrange multipliers of the quadratic subprob-
lem directly correspond to the current Lagrange multipliers
of the NLP, without any necessary reordering. Grouping of
constraints, for example separating equality and inequality
constraints can then be done interally in the QP solver. That
way, for instance calculations of complementarity related val-
ues can iterate easily on only the appropriate constraint type,
inequality constraints in this example. However, this index
mapping is hidden from the user, who therefore does not have
to worry about it, unlike when using QPSOL.

4.2. Fixed variables

Fixed variables are completely removed from the problem,
meaning that not (9), but a reduced problem is formed inter-
nally. To remove a fixed variable xi from the problem, its
constant value has to be put into every appearance of the vari-
able in the unmodified problem. If xi appears in the j-th con-
straint, i.e. if the entry Aij in the i-th row and j-th column of
A is nonzero, then the values of bj and bj have to be updated
by

bj ← bj −Aijxi
bj ← bj −Aijxi.

Similarly, for each entry Qik, k ∈ {1, . . . , n} in the i-th row
of Q, the gradient c has to be updated to

ck ← ck +Qikxi.



Technically, another constant term in the objective function
would appear, but it can be neglected. Then, the i-th column
of Q and A and the i-th row of Q and c can be dropped, as
the variable xi does not appear in the problem as an optimiza-
tion variable anymore. This and several other preprocessing
techniques for quadratic programs are discussed in [12].

4.3. Both sided general constraints

To handle general inequality constraints with lower and upper
bounds, the following transformation is done to avoid dupli-
cation of rows in matrix A. For sake of simple presentation
assume that there are no simple box constraints, i.e. x = −∞
and x = ∞ and that all general constraints have lower and
upper bounds, i.e. b > −∞ and b < ∞. Then for the La-
grangian we have

L(x, z, z) =
1

2
xTQx+ cTx+ zT(b−Ax) + zT(Ax− b)

which yields the optimality conditions

Qx+ c−ATz +ATz = 0 (10)
b−Ax ≤ 0

Ax− b ≤ 0

Z (Ax− b) = 0

Z
(
b−Ax

)
= 0

with the Lagrange multipliers

z ≥ 0 and z ≥ 0.

To avoid duplication ofA in the Jacobian of Newton’s method
due to (10), we introduce the difference between lower and
upper multipliers as zd := z−z and the average as za := z+z

2
and further simplify the complementarity conditions with the
slack variables s, leading to

Qx+ c+ATzd = 0

Ax− s = 0(
za −

1

2
zd

)
(s− b) = 0(

za +
1

2
zd

)(
b− s

)
= 0.

with

b ≤ s ≤ b, za −
1

2
zd ≥ 0 and za +

1

2
zd ≥ 0.

The Jacobian for Newton’s method is then
Q 0 0 AT

A −I 0 0
0 Za − 1

2Zd S −B − 1
2 (S −B)

0 −
(
Za + 1

2Zd
)

B − S 1
2

(
B − S

)


so that we can write the step equation as
Q 0 0 AT

A −I 0 0
0 Z S − 1

2S
0 −Z S 1

2S




∆x
∆s
∆za
∆zd

 =


−rQ
−rA
−r
−r


by using the now auxiliary variables z, z and additionally s :=
s− b and s := b− s. This reduces to(

Q AT

A −
(
S
−1
Z + S−1Z

)−1)(∆x
∆zd

)
=

(
−rQ

−rA +
(
S
−1
Z + S−1Z

)−1 (
−S−1r + S

−1
r
)) (11)

with

∆za = S−1 (−r − Z∆s) +
1

2
∆zd

= S
−1 (−r + Z∆s

)
− 1

2
∆zd,

∆s =
(
S
−1
Z + S−1Z

)−1 (
−S−1r + S

−1
r + ∆zd

)
(12)

and consequently

∆z = S−1 (−r − Z∆s)

∆z = S
−1 (−r + Z∆s

)
.

(13)

The interior point algorithm can therefore work with the pri-
mal iterates x[k] and s[k] and the dual iterates z[k] and z[k].
System (11) then yields the auxiliary values ∆zd from which
the actual directions of interest can be determined directly us-
ing (12) and (13). To achieve this, the constraint matrix A
did not have to be doubled in (11), in contrast to what was
described for QPSOL earlier on.

5. SENSITIVITIES

WORHP offers parametric sensitivity analysis for parameter
dependent nonlinear programs with the module WORHP Zen
[13]. The implicit function theorem implies that the necessary
sensitivity derivatives can be calculated using the KKT matrix
as it appears during the solution of the quadratic subproblems
in the QP solver [14].

As QPSOL does not handle parameter perturbations or
sensitivities at all on its own, WORHP Zen has to go deep
into the structures of QPSOL to compute the sensitivities
with the existing factorized matrix. To make matters worse
WORHP Zen has to take the altered general constraint layout
within the QP solver into account to refer perturbation and
sensitivity indices on the NLP layer to those on the QP layer.
Furthermore, WORHP Zen is intended for post-optimal sen-
sitivity analysis of the NLP, i.e. after termination of WORHP.



Listing 1. Illustrative C++ pseudo code of the declarations of
sensitivity related functions.

enum class SimplePerturbationKind {
OBJECTIVE_LINEAR,
GENERAL_CONSTRAINTS_CONSTANT,
BOX_CONSTRAINTS_CONSTANT

};

class WorhpSubproblem : public QP {
...

void SetSimplePerturbation(
SimplePerturbationKind kind, int index);

void SetNonlinearPerturbation(Vector dL_dp,
Vector dg_dp);

Vector GetSensitivitiesX();
Vector GetSensitivitiesMultsBox();
Vector GetSensitivitiesMultsGeneral();

};

Hence, features that rely on post-optimal sensitivity analysis
of QP subproblems like feasibility refinement [15, 16] have
to access the system matrix directly as well.

The newly designed solver WORHP QP simplifies these
matters greatly. Two functions SetSimplePerturba-
tion and SetNonlinearPerturbation allow setting
perturbations of any kind through the new interface. The
sensitivity derivatives with respect to the given perturbation
can then be retrieved for the primal variables x, the Lagrange
multipliers for the box constraints and those for the gen-
eral constraints with the functions GetSensitivitiesX,
GetSensitivitiesMultsBox and GetSensitiv-
itiesMultsGeneral respectively. Listing 1 roughly
illustrates how these functions are declared in the C++ code
of WORHP QP. All of WORHP’s post-optimal QP sensi-
tivity analysis features can therefore retrieve the necessary
sensitivity derivatives using this clean interface directly from
the QP solver. Similarly, WORHP Zen can simply forward
and/or use the sensitivity derivatives of the QP for the post-
optimal NLP sensitivity analysis. And, as a valuable side-
effect, sensitivity derivatives are also available to the user if
WORHP QP is used as a standalone.

6. NUMERICAL RESULTS

To evaluate the performance of the new QP solver, we com-
pare WORHP using first QPSOL and second WORHP QP as
its QP solver. We use the test set CUTEst [17] for our evalu-
ation. In the version from 2018-05-08 that we are using, the
test set contains 1305 continuous optimization problems.

To allow for a better comparison, WORHP’s default set-
tings were altered to give stricter termination criteria and
more consistent iteration behaviour. Several termination

Table 1. Changed WORHP parameters (compared to default)
for the numerical experiments.

Parameter default value used value
KeepAcceptableSol True False
LowPassFilter True False
ScaledKKT True False
Ares [42, 41, 42, 43, [50]

44, 41, 50]

Table 2. Number of problems of the CUTEst test set for
which WORHP terminated with an optimal solution, an ac-
ceptable solution or unsuccessfully for the two QP solvers.

Used QP solver optimal acceptable unsuccessful
WORHP QP 1039 61 205
QPSOL 971 96 238

heuristics were disabled, as well as most recovery strategies.
Table 1 shows the changed parameters in detail. All tests
were run on a system with a dual CPU, the Intel R© Xeon R©

CPU E5-2637 v3 @ 3.50GHz. To avoid inconsistent perfor-
mance caused by varying clock speeds as much as possible,
at most two problem instances were run simultaneously at all
times. No parallelism for linear algebra or other operations
was enabled, i.e. all problem instances ran with only one
thread. All instances were compiled using gcc version 5.4.0
on Ubuntu 16.04.

Table 2 shows the number of optimal, acceptable and un-
successful terminations of WORHP using the old versus the
new QP solver. This categorization is that of WORHP for
the default tolerance parameters. The results indicate that the
newly designed solver improves stability by a significant mar-
gin.

For a more detailed comparison, performance profiles as pro-
posed by Dolan and Moré [18] are considered. These plot
the percentage of problems that is solved in at most “τ -times
the cost” as the best of the considered solvers for all consid-
ered solvers over τ . Different performance measures can be
used to quantify the meaning of “τ -times the cost”. Here, we
consider the number of major iterations, the CPU time (user
time of the Linux command time) and the number of objec-
tive function evaluations as performance measures. The CPU
time performance profile for instance shows the percentage
of problems that are solved within at most τ -times the fastest
observed solution time over the factor τ . To overcome run-
time fluctuations, the problem instances were restarted until
the total runtime across all restarts reached 10 minutes, or at
most 100 times and the average time was taken.

Figure 1 shows these performance profiles for all prob-
lems that terminated successfully for at least one of the two



0 1 2 3 4 5

40

50

60

70

80

90

log2(τ)

%
of

pr
ob

le
m

s

Iterations

WORHP QP
QPSOL

virtual best/worst

0 2 4

20

40

60

80

CPU Time

0 2 4

40

60

80

Function Evaluations

Fig. 1. Performance profiles for WORHP on the CUTEst test
set using different QP solvers. All problems for which at least
one variant terminated successfully are considered.

variants. The graphs show a clear advantage of using the new
solver over the old one. Roughly 66% of problems are solved
in less or the same amount of iterations with WORHP QP than
with QPSOL, only 57% of problems the other way round. For
CPU time and number of function evaluations these percent-
ages are 53% to 32% and 62% to 53% respectively. Further-
more, for increasing τ the new solver stays in the lead.

As nonlinear programs can have many local minima, compar-
ing solver runs without any further checks can be misleading.
For example, if a run happens to find its way to a local min-
imum that is numerically much easier to handle than a mini-
mum which a different run finds, the former run might seem
much better performance wise. However, the runs are simply
not really comparable in such case.

Therefore, in Figure 2 only problems for which both vari-
ants terminate successfully with roughly the same objective
value (with both absolute and relative tolerances of 0.001)
are taken into account. These are in total 977 of the 1305
problems, i.e. about 75%. The plots show very similar re-
sults, confirming the observations from before. WORHP QP
finds the same minimum in less time than QPSOL for 46%

0 1 2 3 4 5

40

50

60

70

80

log2(τ)

%
of

pr
ob

le
m

s

Iterations

WORHP QP
QPSOL

virtual best/worst

0 2 4

20

40

60

80

CPU Time

0 2 4

40

60

80

Function Evaluations

Fig. 2. Performance profiles for WORHP on the CUTEst test
set using different QP solvers. Only problems for which both
variants terminated successfully with close objective values
are taken into account.

of all problems. On the other hand, QPSOL finds the same
minimum in less time than WORHP QP for only 29% of
all problems. Note that these percentages are in relation to
all 1305 problems, i.e. the remaining 25% are problems for
which different or no minima were found. Comparing only
on the 75% of problems that are solved equally, we can say
that WORHP QP is faster than QPSOL in 61% of these cases.
Similar advantages of WORHP QP can be observed for the
other two cost measures, number of major iterations and num-
ber of objective function evaluations. Again, these improve-
ments of the new solver for τ = 1 continue for larger τ .

7. CONCLUSION

We discussed several issues regarding a reworked QP solver
for WORHP. Additional implemented algorithmic approaches
were briefly described. Limitations imposed by the problem
formulation of the old solver QPSOL were outlined and a re-
worked formulation that solves these problems was presented.
We described a clean interface for using sensitivity derivatives
for post-optimal sensitivity analysis for both the QP as well



as the NLP layer, circumventing many of the caveats of the
old implementation. Numerical results of WORHP with the
reworked solver on the CUTEst test set show significant ro-
bustness and performance improvements over WORHP with
QPSOL.

The authors would like to thank Renke Kuhlmann for provid-
ing the scripts to generate the performance profiles.

8. REFERENCES

[1] C. Büskens and D. Wassel, “The ESA NLP solver
WORHP,” in Modeling and Optimization in Space En-
gineering, G. Fasano and J. D. Pintér, Eds., New York,
NY, 2013, pp. 85–110, Springer New York.

[2] M. Gerdts, User’s Guide QP Solver, Universität der
Bundeswehr München, Feb. 2013.

[3] R. Kuhlmann and C. Büskens, “A primal–dual
augmented lagrangian penalty-interior-point filter line
search algorithm,” Mathematical Methods of Opera-
tions Research, vol. 87, no. 3, pp. 451–483, Jun 2018.

[4] J. Nocedal and S. J. Wright, Numerical Optimization,
Springer, New York, NY, USA, 1999.

[5] J. Gondzio, “Interior point methods 25 years later,” Eu-
ropean Journal of Operational Research, vol. 218, no.
3, pp. 587 – 601, 2012.

[6] J. Gondzio and A. Grothey, “A new unblocking tech-
nique to warmstart interior point methods based on sen-
sitivity analysis,” SIAM Journal on Optimization, vol.
19, no. 3, pp. 1184–1210, 2008.

[7] S. Mehrotra, “On the implementation of a primal-dual
interior point method,” SIAM Journal on Optimization,
vol. 2, no. 4, pp. 575–601, 1992.

[8] E. M. Gertz and S. J. Wright, “Object-oriented software
for quadratic programming,” ACM Trans. Math. Softw.,
vol. 29, no. 1, pp. 58–81, Mar. 2003.

[9] J. Gondzio, “Multiple centrality corrections in a primal-
dual method for linear programming,” Computational

Optimization and Applications, vol. 6, no. 2, pp. 137–
156, Sep 1996.

[10] Rogue Wave Software, “Solving sparse convex
quadratic programming problems with the C numerical
library,” Tech. Rep., Rogue Wave Software, Boulder,
CO 80301, USA, 11 2012.

[11] M. Colombo and J. Gondzio, “Further development
of multiple centrality correctors for interior point meth-
ods,” Computational Optimization and Applications,
vol. 41, no. 3, pp. 277–305, Dec 2008.

[12] N. I. M. Gould and Ph. L. Toint, “Preprocessing for
quadratic programming,” Mathematical Programming,
vol. 100, no. 1, pp. 95–132, May 2004.

[13] R. Kuhlmann, S. Geffken, and C. Büskens, “WORHP
Zen: Parametric sensitivity analysis for the nonlin-
ear programming solver WORHP,” in Operations Re-
search Proceedings 2017, N. Kliewer, J. F. Ehmke, and
R. Borndörfer, Eds., Cham, 2018, pp. 649–654, Springer
International Publishing.

[14] A. V. Fiacco and Y. Ishizuka, “Sensitivity and stability
analysis for nonlinear programming,” Annals of Opera-
tions Research, vol. 27, no. 1, pp. 215–235, Dec 1990.

[15] S. Geffken and C. Büskens, “Feasibility refinement in
sequential quadratic programming using parametric sen-
sitivity analysis,” Optimization Methods and Software,
vol. 32, no. 4, pp. 754–769, 2017.

[16] S. Geffken, Effizienzsteigerung numerischer Verfahren
der nichtlinearen Optimierung, Ph.D. thesis, Universität
Bremen, 2017.

[17] N. I. M. Gould, D. Orban, and Ph. L. Toint, “CUTEst: a
constrained and unconstrained testing environment with
safe threads for mathematical optimization,” Computa-
tional Optimization and Applications, vol. 60, no. 3, pp.
545–557, Apr 2015.

[18] E. D. Dolan and J. J. Moré, “Benchmarking optimiza-
tion software with performance profiles,” Mathematical
Programming, vol. 91, no. 2, pp. 201–213, Jan 2002.


