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Abstract

The work done on probability of collision between spherical objects in orbit is
extended here to the case of one spherical object and one circular or rectangular
object. The former is a model for spacecraft or debris, while the latter is a model
for a sail or a tether. Two kinds of computations are done. The first kind is the
computation of the collision rate when the flux of one object (typically debris) with
respect to the other object is known. This information is important when planning
a mission. The second kind is the computation of the collision probability for a
particular pair of objects whose probability density functions of the positions are
known. This information is necessary to decide if an evasive maneuver is going to
be performed or not.

1 Introduction

Estimating the rate or probability of collision between orbiting objects is a fundamental
task in space security awareness. The rate is required, for instance, in order to assess the
chance of a satellite experiencing one or more collisions in its lifetime as it interacts with
the surrounding debris environment. The probability of collision needs to be computed
whenever an active spacecraft experiences a critical conjunction in order to determine
whether or not a propulsive collision avoidance maneuver should be performed. Lastly,
if a maneuver is eventually required it can only be optimized with the aid of a proper
collision probability estimation method [1].

There is an abundant literature dealing with the computation of the collision probabil-
ity when the two approaching bodies are spheres [2, 3, 4, 5, 6, 7]. Of these, the methods
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[6, 7] are the most computationally efficient. Method [7] is the only one that can be
applied to the non-Gaussian case.

The spherical envelope of the true spacecraft geometry provides a good conservative
bound of the collision probability for the case of, say, two satellites. But it becomes overly
simplistic when at least one of the two objects is far from spherical. Large circular or
rectangular solar sails of tens to hundreds of square meters surface and km-long tethers,
for instance, are envisioned as passive deorbiting devices to be deployed at the end-of-life
of future spacecraft to provide a low-cost reentry in low earth orbit (LEO). Actually the
European Space Agency is interested in the computation of the rate and probability of
collision that we mentioned in the first paragraph. This is part of the study in which the
authors have been involved and which has motivated them to write the present paper.

The need to compute collision probabilities and rates of non spherical objects has
been recognized before. An outline of how to decompose the International Space Station
into rectangular pieces to compute its probability of collision is given in Chapter 6 of [4].
More recently a computation of the collision probability for rectangular cross section was
presented [8], but it used some approximations that we do without in the present article.

There is a software [9] which can be used to compute the rate of collision of orbiting
ellipsoids, and an ellipsoid can be a sphere and can be made to approach a tether. But
this approach works with pairs of satellites and requires a catalog, whereas our approach
is analytical and we work with a satellite and a flux obtained from a database (for example
ORDEM [10] or MASTER [11]).

The attitude of a dead satellite is a complicated matter, but taking its attitude to be
random is a reasonable assumption ([12], p. 13). Taking the maximum projected area
on the collision plane seems to be a conservative assumption, and this has been done for
cuboids [13], [14] and therefore for rectangles as a particular case. But if an upper bound
of the actual projection area is used, the deorbiting time is underestimated, therefore it
is not clear if taking the maximum projected area is actually a safer option than taking
the attitude to be random.

The goal of this article is to provide formulae for the collision rate and the collision
probability of tethers and rectangular or circular sails (henceforth, body MM) against
satellites or debris, modeled by spheres (henceforth, body SS). All of the results are
analytical except for the calculation of the collision probability of a rectangle and a sphere,
for which a very efficient program has been written.

In section 2 the general theoretical setup of this article is laid down. In section 3 we
are interested in the rate of collision of body MM with any satellite or debris over a
long interval of time. A typical use of this rate is to estimate the survival probability of a
certain mission. In subsection 3.1 the projectionM ofMM onto the encounter plane stays
the same over the long interval of time. In subsection 3.2 MM tumbles around randomly.
In section 4 the probability of collision of body MM against one particular body SS is
found. We suppose that the conditions of short-encounter model [2, 15, 3, 5, 4, 16, 1, 6]
are fulfilled and that the probability density functions (henceforth, pdf) of the positions
of both body MM and body SS are known. A typical use of this probability of collision
is to decide if an evasive maneuver is going to be made or not. In section 5 the advantages
of our formulae over the sphere approximation and some numerical results are discussed.
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2 Probability of collision during a short encounter

P

QM S

Figure 1: The collision region in the encounter plane is found by sliding the
projection of the debris or the satellite (the circle S) around the projection
M.

Whether we want to find collision rate or the collision probability, the first step is to
find the region of collision in the encounter plane, which is the plane perpendicular to the
relative velocity v⃗ of bodies MM and SS. Let M and S denote the projections of bodies
MM and SS onto the encounter plane (also known as b-plane). Then, as shown in Fig.
1, the collision region is the shaded region, which is obtained by sliding S (the projection
of the debris or the satellite) around M . When the S comes back to its original position,
the point Q shown in Fig. 1 has drawn the contour of the shaded region. We shall denote
the shaded region by M ⊕ (−S), because it is the Minkowski sum of the projections of M
and the inversion of S ([17], remark at the end of p. 12). For a proof see Appendix 1.

For a more complicated example of Minkowski sum of two projections of spacecraft,
see Fig. 11 of [18]. For a more detailed exposition of the relation between the collision
region and the Minkowski sum see Appendix 1.

Let ρ be the pdf of the vector
−→
PQ (see Fig. 1). Then the probability of collision

between MM and SS is ∫
M⊕(−S)

d2r ρ(r⃗). (1)
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In order to find the collision probability we need both the dashed region Ms and ρ. But
to find the rate the latter will suffice.

We now show how to find the projection ρ of the pdf of the relative position
−→
PQ onto

the encounter plane.
We assume that pdf’s of the positions P and Q, ρP and ρQ, respectively, are given.

That is, ρP (r⃗) d3r is the probability that the point P is in the interval [x, x + dx] ×
[y, y + dy] × [z, z + dz], and a similar statement defines ρQ. Then, since ρP and ρQ are

independent, the probability density that
−→
PQ be equal to r⃗ is the integral over all possible

ways in which the positions of P and Q differ by a vector r⃗, that is,

ρrel(r⃗) =

∫
d3r′ ρP (r⃗

′)ρQ(r⃗ + r⃗′) =

∫
d3r′ ρP (−r⃗ + r⃗′)ρQ(r⃗

′). (2)

Note that if ρP and ρQ are Gaussians, then ρrel is also a Gaussian.
ρ is the projection of ρrel onto the encounter plane, that is for any r⃗ in the encounter

plane,

ρ(r⃗) =

∫
dλ ρrel(r⃗ + λv⃗), (3)

where v⃗ is the relative velocity. Note that ρ is a marginal distribution.

3 Rate of collision over a long interval of time

In the present section we provide a general scheme to assess the collision probability of
a non-spherical body MM with a population of spherical debris over an interval of time
which includes many orbital periods.

Strictly speaking, collisions are correlated random events. For example, debris origi-
nated in an explosion appears in clouds [19], so that if a collision with a piece of debris
in the cloud has taken place, then for a short period of time the satellite is likely to still
be in that cloud and has a larger than usual probability of colliding again. Debris of
astronomical origin which is in solar orbit also comes in clouds. However, collisions are
very unlikely, and the mean time between collisions is much larger than the time that the
satellite spends in a cloud. Therefore, over long intervals of time, collisions are uncor-
related random events. Therefore their occurrence is a Poisson process [20] whose rate
we want to determine. It follows from (1) that, on the average, the probability that the
result of flyby is a collision is

ρ̄ A(M ⊕ (−S)), (4)

where A(M⊕(−S)) is the area of the Minkowski sum and ρ̄ is the average value of ρ. In a
flyby ρ̄ is the inverse of the area of the region of the encounter plane where the incoming
debris might be found. The rate of collision of the Poisson process is ρ̄A(M ⊕ (−S))
divided by the time ∆t between flybys. We now determine this rate.

For each incoming sphere SS there is a different encounter plane which yields a dif-
ferent Minkowski sum M ⊕ (−S). We are going to derive first the case in which all of
the incoming spheres have the same size and direction. Let ϕ be their flux in the MM
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system of reference. For example this flux can be obtained from the ORDEM [10] or
MASTER [11] databases, where it is given in the system of reference of an object MM
whose orbital parameters are given by the user. These spheres SS are normally incident
on M ⊕S. ρ̄ is a surface density of spheres SS, because it has dimensions of L−2 (inverse
length squared). The number of spheres SS incident on M⊕(−S) during a time ∆t is, by
definition of flux, equal to ϕA(M⊕ (−S))∆t. The surface density of spheres on M⊕ (−S)
is then ϕ∆t = ρ̄ and the Poisson rate wanted in the last sentence of the last paragraph is
ϕA(M ⊕ (−S)). The probability of n collisions during an interval t is

e−ϕA(M⊕(−S))t (ϕA(M ⊕ (−S)))n

n!
. (5)

The most interesting case is n = 0, which yields the survival probability, e−ϕA(M⊕(−S))t.
Note that eq. (5) is a generalization of formula (3.2) in [21]. Indeed, formula (3.2) in

[21] is formula (5) with A(M ⊕ (−S))) substituted by A(M). When the size of the debris
is small compared to the size of MM , formula (3.2) in [21] may be used. When SS is
large debris or satellites, their size must be included in the analysis and expression (5)
must be used.

So far we have obtained the collision rate for fixed size and incoming direction of the
spheres SS. For an arbitrary distribution of sizes and incoming directions one has to
weigh by the distribution and integrate over the sizes of the spheres and the directions of
the flux.

3.1 Fixed attitude with respect to the encounter plane

b sin b

a sin a

P

Q
Q

Q
Q

b− a

Figure 2: Minkowski sum of a rectangle and a sphere.

Most of the time, collision is with small debris. Then the rim in Fig. 1 is negligible
and A(M ⊕ (−S)) may be very well approximated by A(M). However, tethers and sails
may also collide with active or dead spacecraft, whose sizes are not negligible compared
to the size of the sail or tether. Then the area of the rim in Fig. 1 (that is, the region
between M and M ⊕ (−S)) has to be taken into account. When the projection M is
a parallelogram and the radius of the sphere is R, it is clear from Fig. 2 that the area
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of M ⊕ (−S) is the projected area of the rectangle + (the projected perimeter of the
rectangle × R) + πR2, that is

A(M ⊕ (−S)) = A(M) + per(M)R + πR2, (6)

where per(M) is the perimeter of M . This formula holds whenever the projection M is
convex. Indeed, the Steiner-Minkowski theorem gives a formula for the computation of
the n-dimensional volume of Minkowski sums of convex bodies and spheres. When n = 2
this formula is simply the above formula ([22], p. 116).

In this section we are going to find the area A(M⊕ (−S)) to be substituted in formula
(5) for a rectangular sail, a tether and a circular sail.

3.1.1 Rectangle

The projection of a rectangle onto a plane is a parallelogram. Indeed, a projection is a
linear transformation (see, e. g., [23], p. 113). Therefore, it transforms parallel lines into
parallel lines.

a

b

b

a

vrelative

Figure 3: Angles θa and θb are shown.

Fig. 2 is useful to follow parts of this paragraph. Let θa and θb be the angles made
by the direction of the relative velocity and the directions of the sides of the rectangular
sail (see Fig. 3). We define a Cartesian coordinate frame whose z-axis is parallel to
v⃗. Then we define spherical coordinates where θ is the colatitude (angle made with the
positive direction of the z-axis) and φ is the longitude. The coordinates of the unit
vectors associated with the sides of the sail are u⃗a = (sin θa cosφa, sin θa sinφa, cos θa) and
u⃗b = (sin θb cosφb, sin θb sinφb, cos θb). The cosine of the angle θM made by the z-axis and
the vector perpendicular to the sail is the third component of u⃗a × u⃗b, which is
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cos θM = sin(φb − φa) sin θa sin θb. (7)

Since u⃗a and u⃗b are perpendicular, u⃗a · u⃗b = cos θa cos θb + sin θa sin θb cos(φb − φa) = 0 ⇒

cos(φb − φa) = −cos θa cos θb
sin θa sin θb

. (8)

Therefore,

A(M) = ab cos θM = ab

√
1−

(
cos θa cos θb
sin θa sin θb

)2

sin θa sin θb = ab
√

− cos(θa + θb) cos(θa − θb)

(9)
and

A(M ⊕ (−S)) = ab
√
− cos(θa + θb) cos(θa − θb) + 2(a sin θa + b sin θb)R + πR2. (10)

This is the expression to be substituted in equation (5).
Of course M⊕(−S) in Fig. 2 could have been circumscribed by a larger parallelogram,

but the formula for its area is not simpler than the preceding exact formula.

3.1.2 Tether

Figure 4: Minkowski sum of a rectangle and a disk. Only the two large contributions at
the sides are kept in expression (11).

We have seen that the projection of a rectangle is not a rectangle but (in general) a
parallelogram. Likewise, the projection of a cylindrical or tape tether onto a plane is not
a rectangle. However, the difference between its projection and a rectangle is very small.
This is because the length to width ratio of tethers is of the order of 105. Furthermore, a
subsatellite of non negligible size and mass is in most of the cases attached to the tether
end for various purposes. For instance in a mechanical tether it can be a ballast mass to
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ease the tether deployment, while in an electrodynamic tether the subsatellite may host
an electron emitting device (e.g. a hollow cathode) to maximize the transmitted current.
Therefore we may forget about the non-rectangular part of the projection altogether.

We denote α to be the angle made by the tether and the collision plane.
Case 1) Round tether of radius r and length L. Its projection on the collision plane

is a rectangle of width 2r and length L cosα. According to the formula (6), A(M ⊕ S) =
2rL cosα + 2R(2r + L cosα) + πR2. However, as explained at the beginning of this
subsubsection, we neglect the contributions of the ends of the tether, because that part
of the Minkowski sum is going to be taken into account by the Minkowski sum of the
satellite or the hollow cathode and the sphere. Therefore we just keep the contribution
(see Fig. 4)

2rL cosα + 2RL cosα = 2(R + r)L cosα. (11)

If the sphere is not small debris but a satellite, the above expression may be approximated
by 2RL cosα.

Case 2) The tether is a tape of length L, width w (a typical value for w would be 2 cm)
and negligible thickness. The edges of the tape are not straight; the tape is twisted and
its projection on a plane has sinusoidal edges, as shown in Fig. 5. While a computation of
the Minkowski sum is in principle possible, one may also substitute the actual projection
by a rectangle with the same axis of symmetry and width 2w/π, which has the same area
as the actual projection (see Fig. 5). Indeed, let β be the angle made by some straight
line and some segment. We compute the average of the projection of the segment over the
straight line over the range [0, π/2], which, by symmetry, is the same as the average over
the range [0, 2π]. The probability density function of the uniform density in the range
[0, π/2] is the constant 1

π/2
. Therefore the factor by which the length of the segment has to

be multiplied is
∫ π/2

0
dβ cosβ

π/2
= 2

π
. Thus if w is the width of the tape, 2w/π is its twisted

width. With this approximation, the projection on the collision plane is a rectangle of
width 2w/π and length L cosα. According to formula (6), the area of the Minkowski
sum is ((2w/π)L cosα + 2R((2w/π + L cosα)) + πR2. For the same reasons that lead to
expression (11), we just keep the contribution

2w

π
L cosα + 2RL cosα = 2

(w
π
+R

)
L cosα. (12)

If the sphere is not small debris but a satellite, the above expression may be approximated
by 2RL cosα.

3.1.3 Disk

First we show that the projection of a disk of radius a onto a plane pl is an ellipse. Let
θM be the angle between pl and the plane which contains the disk. Construct a Cartesian
coordinate frame whose x-axis is the intersection between the plane which contains the
disk and the plane pl, whose z-axis is perpendicular to the plane pl and whose y-axis is
perpendicular to the other two and completes a right-handed frame. Then the projection
of the diameter of the disk which is parallel to the x-axis still has radius a, but all chords
perpendicular to the said diameter shrink by a factor cos θM when projected. An ellipse
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Figure 5: To the left, projection of a twisted tape on to a plane. To the right, projection
of a twisted tape on to a plane and a rectangle of the same area.

of semiaxes a and b can be obtained from a disk of radius a by a dilation, as is clear from
the Cartesian formula (x/a)2 + (y/b)2 = 1. Therefore the said projection is indeed an
ellipse of semiaxes a and a cos θM .

The perimeter of an ellipse of semiaxes a and b is 4aE
(
1− b2

a2

)
, where E is the complete

elliptic integral of the second kind. It follows that

A(M ⊕ (−S)) = πR2
sail cos θM + 4RsailE(sin2 θM)R + πR2, (13)

where Rsail is the radius of the disk. This is the expression to be substituted in equation
(5).

3.2 Random attitude

If we take the attitude of body MM to be random, then we need to compute the average
area of M ⊕ S when the attitude of body MM is averaged over. Fortunately, as we shall
see, there is a simple formula when MM is a flat, convex surface.

Lemma. Let ℓ be the length of a flat curve Γ (i. e.,
∫
Γ
dr = ℓ) contained in a

plane whose normal makes an angle θ with the z-axis. Then the average (with respect to
rotations of the curve Γ in its plane) of the length of the projection of the curve Γ onto
the xy-plane is

2

π
E(sin2 θ)ℓ, (14)

where E is the complete elliptic integral of the second kind.
Proof. Let x′ and y′ be Cartesian coordinates for the plane in which the curve Γ lies.

We may, without loss of generality, suppose that the axis x′ and the axis x are the same, so
that the normal to the plane containing the curve Γ is contained in the yz-plane. Consider
an oriented element of length dr⃗′ of the curve Γ which makes an angle φ′ with the x′-axis,
that is, dr⃗ = |dr⃗|(cosφ′, sinφ′, 0). In x, y, z coordinates the unit vector (cosφ′, sinφ′, 0) is
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dr

x’

y’

’

’

Figure 6: Curve Γ to be projected onto the xy plane.

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

 cosφ′

sinφ′

0

 =

 cosφ′

sinφ′ cos θ
− sinφ′ sin θ

 , (15)

the length of whose projection on the xy-plane is
√
cos2 φ′ + sin2 φ′ cos2 θ. The average

of this expression over the angle φ′ is

2

π

∫ π
2

0

dφ′
√
cos2 φ′ + sin2 φ′ cos2 θ =

2

π
E(sin2 θ). (16)

Therefore the average projected length is

2

π

∫ π
2

0

dφ′
∫
Γ

dr

√
cos2 φ′ + sin2 φ′ cos2 θ =

∫
Γ

dr
2

π
E(sin2 θ) =

2

π
E(sin2 θ)ℓ. QED.

(17)
Note that the above lemma is true regardless of whether the curve Γ is open or closed,

convex or concave. The formula for the length of an ellipse, 4aE
(
1− b2

a2

)
, is a particular

case of the above formula, since an ellipse of semiaxes a and b is the projection on the
xy-plane of a circle which makes an angle arccos(b/a) with the said plane.

The projected surface of a flat figure of area A contained in a plane whose normal makes
an angle θ with the z-axis is A cos θ. The element of surface in spherical coordinates is
r2 sin θ dθ dr. Therefore, the probability that the colatitude be θ is proportional to sin θ.

Since
∫ π/2

0
dθ sin θ = 1, the Steiner-Minkowski formula (6) yields that the average collision

cross section when the orientation of a convex flat figure is isotropic is∫ π/2

0

dθ sin θ
(
A cos θ +

2

π
E(sin2 θ)ℓR + πR2

)
=

A

2
+

πℓR

4
+ πR2. (18)
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P

Q

M
S

Figure 7: It is seen in this example that M ⊕ S ⊂ Menv ⊕ S, as proven in the text.

Example 1. The figure is a rectangle of sides a and b. Its average collision cross
section is

A(M ⊕ (−S)) =
ab

2
+

π(a+ b)R

2
+ πR2. (19)

Example 2. The figure is a disk of radius Rsail. Its average collision cross section is

A(M ⊕ (−S)) =
πR2

sail

2
+

π2RsailR

2
+ πR2. (20)

For the reasons given in subsubsection 2.1.2, the case of the tether (b << a) would be
ab
2
+ πaR

2
, with b the width of the cylindrical tether, or b = 2/π times its width if it is a

tape. However, the attitude of the tether is not random, because of the large disparity
between its moments of inertia and the gravity gradient [24].

The convex envelope of a body is the smallest convex body which contains it. When
this body is a flat figure, the convex envelope is the figure made by a rubber band which
surrounds the figure. It is intuitive that, as depicted in Fig. 7, M ⊕ (−S) ⊂ Menv⊕ (−S).
Indeed, M ⊂ Menv ⇒ Menv = M ∪M ′, where M ′ = Menv −M . The Minkowski sum is
distributive with respect to the union of sets (see Appendix 1), therefore Menv ⊕ (−S) =
(M ⊕ (−S)) ∪ (M ′ ⊕ (−S)) ⊃ M ⊕ (−S).

We use this result to bound the average collision cross section of a concave flat figure:

A(M ⊕ (−S)) ≤ Aenv

2
+

πℓenvR

4
+ πR2, (21)

where Aenv and ℓenv are the area and the perimeter of the convex envelope, respectively.

11



4 Probability of collision for rectangles, tethers and

disks

We are going to suppose that ρrel is a Gaussian, because the pdf’s of the position, in
terms of which ρrel is defined, are almost always given as Gaussians. Then the integral in
(1) cannot be done for arbitrary Minkowski sum. In particular, it cannot be done for the
Minkowski sum of a circle and an ellipse or the Minkowski sum of a circle and a parallel-
ogram. However, the Minkowski sum of a circle and an ellipse, and the Minkowski sum of
a circle and a parallelogram can be tightly enclosed by an ellipse and by a parallelogram,
respectively. Good analytical approximations for the computation of the integral in (1)
are available when Ms is the ellipse or the parallelogram, as we shall see.

4.1 The rectangle

An upper bound for the probability of collision is∫
Par(M⊕(−S))

ρ(r⃗), (22)

where Par(M⊕(−S)) is the enclosing parallelogram shown in Fig. 8 of the Minkowski sum
shown in Fig. 2. If R is the radius of the sphere, the sides of the enclosing parallelogram
are at a distance R from the projection of the rectangle. We need to find the length added
to each of the sides shown in Figure 8. In the left figure the two kinds of kites whose
sides we need to find are shown in dashed lines. The angles made by the sides of the
kites which join at the vertex of the parallelogram are φb − φa for the right upper kite
and π − (φb − φa) for the right lower kite. In the right figure, the angle made by the two
segments of length R is π−(φb−φa). It is easy to see that the length of the dotted segment
is 2R sin((π − (φb − φa))/2) = 2R cos((φb − φa)/2). The larger triangle is an isosceles
triangle whose angles have values (π− (φb −φa))/2 and φb −φa. It follows from the sine

theorem that x = 2R cos2((φb − φa)/2)/ sin(φb − φa) = R tan π−(φb−φa)
2

. Likewise, for the
right upper kite the added length is x = 2R sin2((φb−φa)/2)/ sin(φb−φa) = R tan φb−φa

2
.

Then the length added to each of the sides is

R tan
π − (φb − φa)

2
+R tan

φb − φa

2
=

2R

sin(φb − φa)
=

R sin(θa + θb)√
− cos(θa + θb) cos(θa − θb)

,

(23)
where the last equality can be obtained from eqs. (8) and (9).

The enclosing parallelogram is now completely determined. The problem at hand is
to evaluate the integral

1

2πσxσy

∫
Par(M⊕(−S))

d2r exp−1

2

(
x2

σ2
x

+
y2

σ2
y

)
, (24)

which is a tight upper bound for the collision probability. In order to do this integral we
shall develop a method for the computation of bivariate normal probabilities in rectangular
domains based on the work of Genz [25].
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b sin b

a sin a

ab−

P

x

R

R

Figure 8: In the left figure the two kinds of kites whose sides we need to find are shown
in dashed lines. In the right figure one of them is amplified.

In [25] Genz proposes and compares several algorithms for the numerical computation
of bivariate, trivariate normal distribution and Student t probability distributions. In
particular, a very fast algorithm is presented for computing the bivariate normal proba-
bility L(h, k, ρ) for a domain of the form [h,∞) × [k,∞) (h, k ∈ ℜ) and a Gaussian of
correlation ρ ∈ [0, 1] and σx = σy = 1. Note that L is related to the standard bivariate
normal cumulative distribution Φ by the expression Φ((x, y), ρ) = L(−x,−y, ρ). A more
detailed description of the algorithm can be found in Appendix 4.

To apply this algorithm, the domain and the covariance matrix have to be transformed
so that the former becomes a rectangle and the latter a correlation matrix. Let V0 =
(x0, y0) be a vertex of the parallelogram, and let (x1, y1), (x2, y2) be the coordinates of the
two vertices adjacent to V0. We define

a⃗ = (ax, ay) ≡ (x1, y1)− (x0, y0) and b⃗ = (bx, by) ≡ (x2, y2)− (x0, y0), (25)

where a⃗ and b⃗ are the vectors representing the sides of the parallelogram departing from V0.
It is then possible to find a linear transformation, defined by matrix M , that transforms
the parallelogram into a square of unit side by imposing:

Ma⃗ =

(
1
0

)
, Mb⃗ =

(
0
1

)
. (26)

Combining these two equations and solving for M yields:

M ≡
(

ax bx
ay by

)−1

(27)

Note that the resulting linear transformation will exist as long the matrix formed by a⃗
and b⃗ is invertible, that is, if both vectors are linearly independent. This condition will
be met by any non-degenerate parallelogram.

The new domain is a square of unit side, defined by vertex

V ∗
0 =

(
x∗
0

y∗0

)
≡ MV0 , (28)
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and side vectors a⃗∗ = (a∗x, a
∗
y) ≡ (1, 0) and b⃗∗ = (b∗x.b

∗
y) ≡ (0, 1). The covariance matrix

will transform to: (
σ∗2
x σ∗

xy

σ∗
xy σ∗2

y

)
≡ M

(
σ2
x 0
0 σ2

y

)
MT , (29)

which is in general not diagonal.
In the algorithm by Genz a correlation matrix instead of a covariance matrix is used,

so one final transformation is needed. By applying two dilations (or contractions) of
magnitudes 1/σ∗

x and 1/σ∗
y along the x and y axes, respectively, the covariance matrix

becomes a correlation matrix:(
1 ρ′

ρ′ 1

)
≡

(
1 σ∗

xy/σ
∗
xσ

∗
y

σ∗
xy/σ

∗
xσ

∗
y 1

)
, (30)

and the domain becomes a rectangle of vertex

V ′
0 =

(
x′
0

y′0

)
≡

(
x∗
0/σ

∗
x

y∗0/σ
∗
y

)
, (31)

and side vectors a⃗′ = (a′x, a
′
y) ≡ (1/σ∗

x, 0) and b⃗′ = (b′x, b
′
y) ≡ (0, 1/σ∗

y).
Calling Rect the new domain, it is possible to write

1

2πσxσy

∫
Par(Ms)

d2r exp−1

2

(
x2

σ2
x

+
y2

σ2
y

)
=

1

2π
√

1− ρ′2

∫
Rect

d2r exp
−(x2 − 2ρ′xy − y2)

2(1− ρ′2)
= Φ(Rect, ρ′), (32)

where the latter can be computed numerically by combining four calls to the bivariate
normal probability function considered by Genz:

Φ(Rect, ρ′) = L(x′
0, y

′
0, ρ

′)−L(x′
0+a′x, y

′
0, ρ

′)−L(x′
0, y

′
0+b′y, ρ

′)+L(x′
0+a′x, y

′
0+b′y, ρ

′). (33)

We have programmed a web app implementing Φ(Rect, ρ′) in JavaScript, which can be
found at
http://sdg.aero.upm.es/index.php/online-apps/gaussian-over-parallelogram.

4.2 The very thin rectangle (tether)

If the body MM is a tether then we can approximate its projection on the encounter
plane by a rectangle, as argued in subsubsection 2.1.2.

The probability caught by a rectangle of axes parallel to the principal axes of a Gaus-
sian is

∫ x2

x1

dx
e
− 1

2
x2

σ2
x√

2πσ2
x

∫ y2

y1

dy
e
− 1

2
y2

σ2
y√

2πσ2
y

=

1

2

(
erf

( x2√
2σx

)
− erf

( x1√
2σx

)) 1

2

(
erf

( y2√
2σy

)
− erf

( y1√
2σy

))
. (34)
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Figure 9: The integral of a Gaussian over a rectangle of sides parallel to the principal
axes of the Gaussian factorizes, yielding the result (34).

If the Gaussian is isotropic, then all axes are principal and expression (34) holds.
When the Gaussian is not isotropic (say σy < σx) we may dilate the y direction by a
factor σx/σy to make it isotropic, as shown in Fig. 10 (this transformation is also used
in [8]). A dilation, like a projection, is a linear transformation. Therefore, it transforms
parallel lines into parallel lines. If the eigenaxes of the dilation are not parallel to the
sides of the rectangle, the rectangle is transformed not into another rectangle but into
a parallelogram. However, if the rectangle is very elongated we can again argue as in
subsubsection 2.1.2 and suppose that it will transform into almost another rectangle. In
particular, we suppose that the dilation of the rectangle can be well approximated by a
rectangle whose long axis is the dilated axis and whose width is the dilated width. Since
the new Gaussian is isotropic, its axes may be rotated arbitrarily and still be principal
axes. We rotate them so as to render them parallel to the sides of the dilated rectangle,
as shown in Fig. 10, and then formula (34) can be applied.

In order to adapt the result (34) to the approximation that we have described, we
rewrite it as follows:

1

2

(
erf

(x′ +∆′/2√
2σx

)
− erf

(x′ −∆′/2√
2σx

)) 1

2

(
erf

( y′2√
2σy

)
− erf

( y′1√
2σy

))
, (35)

where (x′, y′1) and (x′, y′2) are the coordinates of the end points of the dilated longitudinal
axis of the tether in the new coordinates and ∆′ is the width of the dilated rectangle.
x′, y′1, y

′
2 and ∆′ are found in Appendix 2 by elementary geometry.

Substitution of these four quantities into formula (35) yields:

1

2

erf
( 1√

2

1

σxσy

σ2
yx2(x2 − x1) + σ2

xy2(y2 − y1)√
σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2

)
− erf

( 1√
2

1

σxσy

σ2
yx1(x2 − x1) + σ2

xy1(y2 − y1)√
σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2

)

15



X

Y

make isotropic

X’

Y’

Figure 10: The transformation shown allows the use of the simple formula (34) for the
computation of the Gaussian probability above any thin rectangle.

1

2

erf

( √
(x2 − x1)2 + (y2 − y1)2

√
2
√

σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2

(
x2y1 − x1y2√

(x2 − x1)2 + (y2 − y1)2
+

∆

2

))
−

erf

( √
(x2 − x1)2 + (y2 − y1)2

√
2
√

σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2

(
x2y1 − x1y2√

(x2 − x1)2 + (y2 − y1)2
− ∆

2

)) . (36)

The coordinates of the ends of the tether are good coordinates to derive the two
preceding formulae, but are not as practical as the following five geometrical parameters:
the b-plane coordinates (x and y) of the geometrical center of the rectangle, the rectangle
length L and width ∆ projected on the b-plane, and the orientation angle, Λ, of the
longest rectangle axis with respect to the x eigenaxis of the covariance ellipsoid. In this
way the coordinates of the four vertices of the rectangle in eq. (36) can be written as:

x1,2 = x± L

2
cosΛ; y1,2 = y ± L

2
sinΛ, (37)

leading to:

1

4

{
erf

[
D2L/2 + xσ2

y cos Λ + yσ2
x sinΛ√

2Dσxσy

]
+ erf

[
D2L/2− xσ2

y cos Λ− yσ2
x sinΛ√

2Dσxσy

]}
{
erf

[
∆/2 + |y cos Λ− x sinΛ|√

2D

]
+ erf

[
∆/2− |y cos Λ− x sinΛ|√

2D

]}
, (38)

where:

D ≡
√
σ2
x sin

2 Λ + σ2
y cos

2 Λ. (39)
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4.3 The disk

The projection of a circle of radius r which makes an angle α with the encounter plane
is an ellipse of semiaxes r cosα and r. The Minkowski sum of this ellipse with a circle of
radius R is not another ellipse, but it is enclosed by an ellipse of semiaxes r cosα+R and
r r cosα+R

r cosα
= r cosα+R

cosα
, as shown in Fig. 11.

Figure 11: The Minkowski sum of an ellipse and a circle is enclosed by the ellipse shown.

In order to find the probability enclosed by this ellipse we dilate along the direction of
the shorter axis by a factor 1/ cosα, so that the ellipse becomes a circle. If the direction
of the shorter axis is w⃗, then the sigmas of the Gaussian have to be multiplied by the
factors (w⃗ · i⃗)/ cosα and (w⃗ · j⃗)/ cosα, respectively. We are then in a position to apply
any of a number of algorithms devised in the last decades in the field of spatial debris to
compute the Gaussian probability caught by a circle [2, 3, 4, 5, 6, 7].

5 Numerical study

In this section we are going to discuss the advantages of our formulae over the sphere
approximation and present some numerical results.

There are two kinds of geometrical approximations. In the first kind the projection
of the object is approximated by a circumscribing circle, in the second by a simpler
geometrical figure of the same area. In both kinds the advantage of a geometrically exact
treatment over an approximation depends of course on the shape of the object.

In this paragraph we discuss the first kind for the computation of a collision rate. If
this kind of approximation is used to compute a probability of collision, then the error
with respect to the integration of the Gaussian over the true projection can be even
larger. For a tether and a plane figure the advantage is large. Debris can be large or
small, but small debris is the most abundant. For small debris the Steiner-Minkowski
formula (6) shows that only the area of the projection of the target matters. For a
tether of length 2R and diameter d the area of its average projection is πdR/2, while
the area of the projection of the circumscribing sphere is πR2. For a disk of radius R
and its circumscribing sphere the average projected areas are, respectively, πR2/2 and
πR2. Thus for these two cases the ratios of the area of the average projection to the area
of the projection of the circumscribing sphere are d/(2R) (in reality less than 0.01) and
1/2, respectively. For the International Space Station this ratio is between 0.01 and 0.1
(see Chapter 6 of [4]). Therefore exact geometrical formulae can significantly improve the
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predictions obtained with the circumscribing sphere. When the debris is not small the
Steiner-Minkowski formula (6) shows that the approximation by a circumscribing circle
becomes better.

In this paragraph we discuss the second kind for the computation of a probabil-
ity of collision first, then for the computation of a collision rate. We give two ex-
amples which have to do with sails and tethers, respectively. a) Isotropic Gaussian
of sigma=10 m centered at the origin. The probability over the square of vertices
(10,0),(20,0),(20,10),(10,10) m is 0.068, while the probability over the parallelogram of
vertices (15,0),(25,0),(15,10),(5,10) m, which has the same area and center, is 0.035. b)
Isotropic Gaussian of sigma=20 m centered at the origin. The probability over a rectangle
of center at (20,0) m, 2000 m long along the y direction and 2 cm long along the x direc-
tion is 0.00024, while the probability over an ellipse with the same center, area and aspect
ratio as the rectangle is 0.00027. The difference is important in the first case and (given
the incertitude of the data) only marginally important in the second case. But perform-
ing calculations with the algorithm provided in subsection V.A of this article (see also
http://sdg.aero.upm.es/index.php/online-apps/gaussian-over-parallelogram) is almost as
fast for the parallelogram as for a rectangle. We have not compared the speeds of the
algorithm for the parallelogram and the various algorithms for the disk, but we believe
that the algorithm for the parallelogram is faster than any of them. When the projection
of the object is approximated by a circle of the same area, the Steiner-Minkowski formula
(6) shows that the approximation underestimates the collision rate (perhaps only by a
small amount), because the circle is the figure of least perimeter for a given area.

To summarize, approximating a parallelogram by a simpler geometrical figure does
not make the calculation faster.

The collision probability of a sail against debris is of the same order of magnitude (the
ratio 1/2 mentioned at the beginning of this section) as the probability of collision of a
round sail or even of a balloon of similar dimensions. The only case in which the collision
probability would be significantly different is when the debris has a relative velocity which
makes a small angle with the surface of the sail. In that case the projection of the sail
would be a very elongated parallelogram, that is, a figure somewhat similar to a tether.
Therefore we are going to limit the numerical exploration of the formulae to the case of
a tether. Before doing that we note that when considering collisions with a sail, one has
to distinguish between collision with the tissue of the sail only and collisions with the sail
and its masts (also called booms) [26], but going into that is beyond the scope of this
article.

Formula (38) depends on x, y,Λ, σx, σy, L and ∆, which makes a thorough exploration
of its parameter space an almost impossible task. We set L = 2000 m and present some
results in two of the most representative situations, which are depicted in figures 12 and
13. It is argued in [7] that one of the sigmas should range between 4 and 4096 m, while
the other should range between 4 and 256 m. Here we have made σx range between 2 and
2048 m and σy range between 2 and 128 m.

Perhaps the main question is: ¿how close can the tether get to the spacecraft without
danger? By danger we mean probability of collision greater than 10−3 or 10−4. The
distance corresponding to 10−5 is also shown because one might want to make an evasive
maneuver so that the probability of collision with the tether diminishes from 10−3 or 10−4
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Figure 12: The dark rectangle stands for the Minkowski sum depicted in Fig. 1. The
tether is at a distance |x0| from the origin.

to 10−4 or 10−5.
The numbers that appear in the tables which follow are distances in meters. We

have made the following choices of ∆. ∆ = 0.07 m because this corresponds (supposing
that the width of the tether is 2 cm) to a sphere of 5 cm diameter which is the smallest
detectable sphere by radar. ∆ = 0.3 m because this corresponds roughly to a sphere of 12
kg which is the largest sphere which breaks when colliding against a tether [26]. ∆ = 2
m and ∆ = 8 represent a medium and a large spacecraft, respectively.

Λ = π/2, ∆ = 0.07 m.
σx \p 10−3 10−4 10−5

2 4.6 6.3 7.6
8 12.6 21.3 27.4
32 0 66.6 95.7
128 0 160 318
512 0 0 943
2048 0 0 1613
Λ = π/2, ∆ = 0.3 m.

σx \p 10−3 10−4 10−5

2 5.72 7.16 8.34
8 18.6 25.3 30.6
32 52 86 110
128 0 271 386
512 0 667 1285
2048 0 0 3848
Λ = π/2, ∆ = 2 m.
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Figure 13: The dark rectangle stands for the Minkowski sum depicted in Fig. 1. The
tether is at a distance |x0|/

√
2 from the origin.

σx \p 10−3 10−4 10−5

2 7.16 8.43 9.52
8 24.3 29.8 34.4
32 81.2 106 127
128 245 368 459
512 482 1200 1627
2048 0 3378 5542
Λ = π/2, ∆ = 8 m.

σx \p 10−3 10−4 10−5

2 10.2 11.4 12.6
8 29 34 38.1
32 97 119 138
128 325 425 506
512 482 1200 1837
2048 1929 4800 6508

The reader might find a little puzzling that for large σx and small ∆ the closest allowed
distance is sometimes 0. This means that no matter where the center of the tether is, the
probability of collision is smaller than 10−3. The first example of this shown in the tables
is when Λ = π/2, ∆ = 0.07, L = 2000, y = 0, σx = 128. In Fig. 14 the probability of
collision p versus the distance x is shown for the said values and one can see that p < 10−3

everywhere.
In the first three examples the sequences for the distances when p = 10−3 are 4.6,

12.6, 0; 5.72, 18.6, 52, 0 m and 7.16, 24.3, 81.2, 245, 482, 0 m. This may lead to the
wrong conclusion that the value 0 is arrived at suddenly or discontinuously. This is not so,
the apparent discontinuity comes from the fact that the values of the sigma are taken in
geometric progression. To understand why the 0 is reached smoothly, think of a segment
on the real line and think of what happens when you increase sigma starting from 0. As
you increase sigma there is first a wave of probability which floods the segment. But after
some sigma, the segment is inside the convex part of the Gaussian and the probability

20



50 100 150 200 250 300
distance inm

0.00005

0.00010

0.00015

0.00020

probability of collision

Figure 14: Irrespective of the relative position, p < 10−3 is guaranteed.

caught in the segment begins to spread and thin out. If the segment is reduced to a
point it is easy to see analytically that the Gaussian, as a function of σ, has a maximum
at σ = 1, precisely the point where it changes from convex to concave. Thus, as sigma
increases, the segment can be moved to the origin until it reaches 0.

Λ = π/4, ∆ = 0.07 m. Now the minimum distance depends on σy.

σy = 2048 m.
σx \p 10−3 10−4

2 0 0
8 0 0
32 0 0
128 0 0

σy = 512 m.
σx \p 10−3 10−4

2 0 0
8 0 0
32 0 0
128 0 0

σy = 128 m.
σx \p 10−3 10−4 10−5

2 0 136 237
8 0 136 237
32 0 138 243

σy = 32 m.
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σx \p 10−3 10−4 10−5

2 15 51 70
8 14 52 72

σy = 8 m.
σx \p 10−3 10−4 10−5

2 10 16 20

Λ = π/4, ∆ = 0.3 m. Now the minimum distance depends on σy.

σy = 2048 m.
σx \p 10−3 10−4

2 0 0
8 0 0
32 0 0
128 0 0

σy = 512 m.
σx \p 10−3 10−4 10−5

2 0 499 502
8 0 496 508
32 0 487 532
128 0 479 635

σy = 128 m.
σx \p 10−3 10−4 10−5

2 68 205 283
8 68 206 283
32 66 211 291

σy = 32 m.
σx \p 10−3 10−4 10−5

2 41 64 80
8 42 65 82

σy = 8 m.
σx \p 10−3 10−4 10−5

2 14 19 23

Λ = π/4, ∆ = 2 m. Now the minimum distance depends on σy.
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σy = 2048 m.
σx \p 10−3 10−4 10−5

2 0 501 503
8 0 505 512
32 0 520 546
128 0 579 688

σy = 512 m.
σx \p 10−3 10−4 10−5

2 455 501 503
8 455 507 513
32 452 527 551
128 420 616 709

σy = 128 m.
σx \p 10−3 10−4 10−5

2 189 271 333
8 189 271 334
32 193 278 343

σy = 32 m.
σx \p 10−3 10−4 10−5

2 61 78 92
8 62 80 94

σy = 8 m.
σx \p 10−3 10−4 10−5

2 18 22 26

Λ = π/4, ∆ = 8 m. Now the minimum distance depends on σy.

σy = 2048 m.
σx \p 10−3 10−4 10−5

2 500 502 504
8 500 509 515
32 501 538 559
128 506 651 735

σy = 512 m.
σx \p 10−3 10−4 10−5

2 501 503 504
8 503 511 516
32 513 543 563
128 563 676 752
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σy = 128 m.
σx \p 10−3 10−4 10−5

2 242 310 366
8 242 311 367
32 248 319 376

σy = 32 m.
σx \p 10−3 10−4 10−5

2 72 87 100
8 73 89 102

σy = 8 m.
σx \p 10−3 10−4 10−5

2 22 26 29

Generally speaking one decomposes an object into various geometrically simple ob-
jects and computes the collision probability for each of them. But it turns out that the
contribution to the overall probability of collision of the end masses is almost always neg-
ligible compared to the contribution of the tether. The reason is that the perimeter of
the tether, pt, is about 1,000 longer than the perimeter of the any of the end masses, pm.
Their collision cross sections are about 2pt rs and pm r + πr2s ≪ 2pt rs, where rs is the
radius of the sphere which might collide with the tether. Only when one of the sigmas is
much smaller than the other (say, σy = 4 m and σy = 500 m) the end-mass lies on the
x axis and the tether is perpendicular to the longest sigma, then both contributions are
about the same. Otherwise the contribution of the tether is orders of magnitude larger.

The most dangerous angle Λ is when the tether is parallel to the eigenaxis of smallest
sigma, because then all of the probability along that axis is caught.

The case ∆ < 0.3 m is a catastrophic collision, because pieces of debris are generated
by the impact (not many pieces, since ∆ < 0.3 m). The case ∆ > 0.3 m is not catastrophic
for the object meeting the tether but is still catastrophic for the tether, which gets cut in
two.

In most of the situations an evasive maneuver of the order of a hundred meters suffices.
When the sphere which might collide with the tether is small (∆ < 0.3 m), there are many
instances in which an evasive maneuver is not necessary because the collision probability
is small even when the nominal trajectories collide. It seems that only when the angle
Λ is unfavorable and the largest sigma is large, evasive maneuvers of the order of a few
kilometers are necessary.

6 Conclusions

The formulae given in this article make it possible to improve the enveloping sphere or
same area circle approximations for the computations of collision rates or probabilities
when one of the objects is a circle, a rectangle or a very long rectangle or cylinder. This
improvement is done without any additional computational cost, since the formulae are
all analytical except for the case of the collision probability of a rectangle, for which a
very fast algorithm, available as an app, is provided.
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The most direct application is to sails and tethers, which motivated this work, but
other applications are possible. In general one may decompose a complex aircraft in
various pieces, and separately compute the probability of collision for each. When one of
the pieces is a solar panel then the formulae for the rectangle can be used. Of course this
leaves the problem of mutual shadowing, but this would be a topic for future work.

Appendix 1

The goal of this Appendix is to show the relation between the Minkowski sum and the
probability that two objects, MM and SS, whose probability density functions (hence-
forth, pdf) of their positions are known, collide when the conditions of short-encounter
model [2, 15, 3, 5, 4, 16, 1, 6] are fulfilled. In the short-encounter model this is equivalent
to finding the probability that the projections M and S on the encounter plane overlap.
The pdf’s of the projections M and S on the encounter plane are the projections of the
pdf’s of MM and SS onto the encounter plane.

The Minkowski sum of two subsets M and S of a vector space is

M⊕ S ≡ {m⃗+ s⃗ s. t. m⃗ ∈ M, s⃗ ∈ S}. (36)

It follows from its definition that the Minkowski sum is commutative and associative.
The Minkowski sum of a set M and the set {t⃗} consisting of just the vector t⃗ is the

translation of M by the vector t⃗. Thus M ⊕ S may be understood as the union of all
translations of M (or S) by vectors in S (or M), that is:

M⊕ S =
∪
t⃗∈S

(
M⊕ {t⃗}

)
=

∪
t⃗∈M

(
{t⃗} ⊕ S

)
. (37)

Since the Minkowski sum is commutative and associative,

({t⃗} ⊕M)⊕ S = {t⃗} ⊕ (M⊕ S).

The preceding formula tells us that the shape of the Minkowski sum of two subsets M
and S of a vector space does not depend on their relative location.

Proposition. M and S overlap ⇔ 0⃗ ∈ M⊕ (−S) ⇔ 0⃗ ∈ (−M)⊕ S.
Proof:

M and S overlap ⇔ ∃ m⃗, s⃗|m⃗ = s⃗ ⇔ ∃ m⃗, s⃗|m⃗−s⃗ = 0⃗ ⇔ 0⃗ ∈ M⊕(−S) ⇔ 0⃗ ∈ (−M)⊕S.QED.

This proposition is well known among the mathematicians who work with the Minkowski
sum and can be found, for example, in the remark at the end of p. 12 of [17]. This propo-
sition yields the condition for two bodies to overlap, thus there should be a connection
between Minkowski sums and the forbidden region described in Fig. 1.

We note first that the sliding procedure described in Fig. 1 has to do with bodies which
move in space, while the Minkowski sum has to do with subsets of a vector space. The
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connection between both concepts is this:LetM be a subset of R2 (or R3). Then the figure
(or body)M is the class of subsetsM ≡

{
{t⃗M}⊕M, ∀t⃗M

}
. Likewise, S ≡

{
{t⃗S}⊕S, ∀t⃗S

}
.

From the proposition this corollary follows: figures M and S overlap whenever t⃗M and
t⃗S exist which satisfy

0⃗ ∈ M⊕ {t⃗M} ⊕ (−S)⊕ {−t⃗S} = M⊕ (−S)⊕ {t⃗M − t⃗S} ⇔

t⃗S − t⃗M ∈ M⊕ (−S) or t⃗M − t⃗S ∈ (−M)⊕ S. (38)

M⊕ (−S) is the set of translations which, when applied to the set S, will make it overlap
with M. (−M)⊕S is the set of translations which, when applied to the set M, will make
it overlap with S.

This corollary establishes the connection between the Minkowski sum and the deter-
mination of the region forbidden to a given point if collision is to be avoided. This is
shown in Fig. 6.

P

Figure 15: A is the rectangle and B is the triangle which contains the origin of coordinates.
In the left figure the region forbidden to P is obtained by sliding the triangle around the
rectangle, as in Fig. 1. In the right figure the triangle B is first inverted, then it is shown
that the forbidden region is A ⊕ (−B). Note that the t⃗B of the corollary is the position
vector of the point P and t⃗A of the corollary is 0⃗, because the rectangle is not being
moved.

Last we show the distributive property

A⊕ (B ∪C) = (A⊕B) ∪ (A⊕C), (39)

which is used in subsection 3.2. It follows from the definition of Minkowski sum:

A⊕ (B ∪C) = {a⃗+ d⃗ s. t. a⃗ ∈ A ∧ d⃗ ∈ (B ∪C)} =

{a⃗+ d⃗ s. t. a⃗ ∈ A ∧ (d⃗ ∈ B ∨ d⃗ ∈ C)}, (40)

where ∧ is the logical “and” and ∨ is the logical “or”. We continue:
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A⊕ (B ∪C) = {a⃗+ d⃗ s. t. (⃗a ∈ A ∧ d⃗ ∈ B) ∨ (⃗a ∈ A ∧ d⃗ ∈ C)} =

{a⃗+ d⃗ s. t. a⃗ ∈ A ∧ d⃗ ∈ B} ∪ {a⃗+ d⃗ s. t. a⃗ ∈ A ∧ d⃗ ∈ C} =

(A⊕B) ∪ (A⊕C). (41)

Appendix 2
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In this derivation we specify the straight lines by the coordinates of their extremes:
r⃗1 = (x1, y1) and r⃗2 = (x2, y2). Let x0 and y0 be the x and y intercepts, respectively, of
the straight line which is the longitudinal axis of the tether and let ∆ be the distance
between the parallel lines. The distance of the longitudinal axis of the tether to the origin,
as shown in Fig. 16 is

dist(x0, y0) =
|x0y0|√
x2
0 + y20

. (42)

27



Let σx and σy be the standard deviations of the Gaussian along its principal axes.
After the dilation y → σx

σy
y has taken place to make the Gaussian isotropic, the extremes

of the new straight line are

iso(r⃗i) =

(
xi,

σx

σy

yi

)
=

1

σy

(σyxi, σxyi). (43)

The x and y intercepts of a straight line determined by its end points r⃗1 = (x1, y1)
and r⃗2 = (x2, y2) are

x0(r⃗1, r⃗2) = x1y2−y1x2

y2−y1

y0(r⃗1, r⃗2) = y1x2−x1y2
x2−x1

 . (44)

Then the distance of the new longitudinal axis to the origin is the x′ that is needed in
formula (35):

x′ = dist (x0(iso(r⃗1), iso(r⃗2)), y0(iso(r⃗1), iso(r⃗2)) =
σx|x1y2 − y1x2|√

σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2
. (45)

The factor by which the distance to the origin has changed after the dilation is

σx|x1y2 − y1x2|√
σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2

√
(x2 − x1)2 + (y2 − y1)2

|x1y2 − y1x2|
=

√
(x2 − x1)2 + (y2 − y1)2√

σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2
σx. (46)

This is also the factor by which the width changes after the dilation, therefore the ∆′ that
is needed in formula (35) is:

∆′ =

√
(x2 − x1)2 + (y2 − y1)2√

σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2
σx∆. (47)

The unit vector which points from iso(r⃗1) to iso(r⃗2) is

u⃗ =

(
σy(x2 − x1), σx(y2 − y1)

)√
σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2
.

Then the coordinates y′1 and y′2 that are needed in formula (35) are:

y′i = iso(r⃗i) · u⃗, i = 1, 2. (48)

Appendix 3
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Let us consider the following bivariate normal (BVN) probability:

L(h, b, ρ) =
1

2π
√

1− ρ2

∫ ∞

h

∫ ∞

k

exp
−(x2 − 2ρxy + y2)

2(1− ρ2)
dxdy (49)

related to the standard BVN distribution by the expression Φ((x0, y0), ρ) = L(−x0,−y0, ρ).
Although it would be possible to evaluate eq. (49) directly using a 2D numerical integra-
tion method, a faster algorithm can be achieved by reducing the problem to a single
integral. Following previous work by Drezner and Wesolowski [27], Genz proposes in [25]
to apply the formula for the partial derivative of the BVN distribution with respect to
the correlation derived by Plackett [28]:

∂L(h, k, r)

∂r
=

1

2π
√
1− r2

exp
−(h2 − 2rhk + k2)

2(1− r2)
, (50)

and integrate it in r to obtain an expression for L in terms of a single integral in the
correlation.

The most straightforward choice would be to integrate between 0 and ρ, since the
initial value for L at r = 0 is easily computed as the product of two univariate normal
distributions. However, the singularity at |r| = 1 negatively affects the accuracy of
the numerical integration for cases with |ρ| ∼ 1. To alleviate this issue Drezner and
Wesolowsky [27] proposed to instead integrate between ρ and sign(ρ): integrating only
over the small region close to the singularity improves the numerical behavior, and the
value of L at r = ±1 can also be expressed in terms of univariate normal distributions.
Unfortunately, this new integral can still present numerical problems for h close but not
equal to sign(ρ)k. Drezner and Wesolowsky circumvented this by applying a clever trick:
they expanded part of the integrand in Taylor series of

√
1− r2, providing the analytic

integral of the polynomial part and performing the numerical integral of the remainder.
The original work by Drezner and Wesolowsky [27] uses the Taylor expansion up to order
3, and Genz [25] later extended the result to order 5.

Building upon all these developments, Genz [25] defines an efficient algorithm for the
numerical evaluation of L in double precision. On the one hand, he uses the integral
between 0 and ρ for |ρ| ≤ 0.925, and the modified integral between ρ and sign(ρ) for
|ρ| > 0.925. To improve the numerical treatment of the integrands, he does the changes
of variable r = sin(θ) and x =

√
1− r2, respectively. On the other hand, he applies

Gauss-Legendre integration rules with enough points to maintain an absolute error less
than 5 · 10−16 (following extensive numerical tests, he proposes the 6 points rule for
|ρ| < 0.3, the 12 points rule for 0.3 ≤ |ρ| < 0.75, and the 20 points rule for |ρ| > 0.75).

This work uses an in-house implementation of the original Genz algorithm, modi-
fied in order to deal with the more general problem of integrating the Gaussian over a
parallelogram, as detailed in subsection 4.1.
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