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ABSTRACT

MODHOC (Multi Objective Direct Hybrid Optimal Control)
is a toolbox for the design, optimisation and trade off study of
space systems and missions. It solves general nonlinear multi
phase optimal control problems, automatically computing a
well spread set of optimal trade off solutions. In addition, it is
able to handle discrete optimisation parameters. In order to do
so, MODHOC combines a direct transcription method based
on finite elements and a global multi objective optimisation
algorithm combining evolutionary heuristics and mathemati-
cal programming. MODHOC has been applied to a variety
of applications: from the optimisation of launch vehicles and
their ascent, abort and re entry trajectories, to the design of
the optimal deployment of constellations of satellites, to the
design of multi target missions. In this paper, the main ele-
ments of MODHOC are described and the application of the
software in space and non space related sample problems is
demonstrated.

Index Terms— Optimal Control, Multi Objective optimi-
sation, Global optimisation, Mixed integer optimisation

1. INTRODUCTION

Space systems are complex engineering systems that need to
operate reliably and optimally in a harsh environment and
with limited resources. Their design is a challenging endeav-
our involving several disciplines simultaneously: decisions
are to be taken at the subsystem or vehicle level, at the tra-
jectory level and at the mission design level, and each choice
can affect several other aspects.

The design process inherently implies the presence of
trade-offs: the performances of a subsystem might need to be
increased in order to mitigate the demands on another sub-
system, while the achievement of a more ambitious mission
goal might require higher overall economic cost, time and
technical complexity of the solution.

This paper presents MODHOC, an open source tool con-
ceived specifically to help in the preliminary design stages
of complex systems. The previous version of MODHOC is
available under the Strath-ACE/SMART-o2c repository of

Github1. Its main goal is to present to the decision makers a
set of optimal trade off solutions, allowing them to take more
informed decisions.

MODHOC combines a transcription method for nonlin-
ear multi-phase optimal control problems, a population based
memetic multi-objective optimisation algorithm and math-
ematical programming solvers. The transcription method
allows to treat general optimal control problems, thus it
can tackle problems with any kind of dynamic model. The
memetic multi-objective optimisation algorithm allows for
a global exploration of the search space and is able to treat
problems with an arbitrary number of objectives. The mathe-
matical programming solvers are used to refine the solutions
obtained and guarantee the local optimality of the solutions
found while also satisfying tight constraints.

The combination of these tools allows MODHOC to si-
multaneously optimise the design of a vehicle and its trajec-
tory, returning several solutions, each striking a different bal-
ance between the high level goals set by the decision maker.
MODHOC has been used in the past to perform the multi-
objective optimisation of multi-stage launch vehicles, of the
ascent, abort and reentering trajectories of spaceplanes, and
of the deployment of constellations of satellites. [1, 2, 3, 4, 5]

In this paper, MODHOC will be applied to a three objec-
tive design and trajectory optimisation problem of a launch
vehicle, a two objective trajectory optimisation from LEO to
GEO orbit, and a two objective planning and scheduling prob-
lem where the order in which the targets are visited is not
specified a priori.

2. MODHOC

MODHOC is composed of these three main building blocks

- DFET, Direct Finite Elements Transcription method

- MACS, Multi Agent Collaborative Search

- NLP, Nonlinear programming solvers
1At the repo site https://github.com/strath-ace/smart-o2c it is possible to

download the optimiser MACS, the DFET transcription method and several
working examples. The version currently open for public access does not
handle discrete variables yet, but will be updated soon.



2.1. DFET

Direct Finite Elements in Time (DFET) is a direct transcrip-
tion method to solve optimal control problems and was ini-
tially proposed by Vasile and Finzi [6] in 2000. Finite Ele-
ments in Time (FET) for the indirect solution of optimal con-
trol problems were initially proposed by Hodges and Bless
[7], and during the late 1990s evolved to the discontinuous
version. Borri [8] and Borri et al. [9] have shown that the
resulting scheme is unconditionally stable, and if the dynam-
ics of the system does not contain any damping term the FET
formulation results in a symplectic integration scheme, thus
conserving the total energy of the system. Moreover, Bottasso
[10] pointed out that FET for the forward integration of ordi-
nary differential equations are equivalent to some classes of
implicit Runge-Kutta integration schemes. In addition, they
can be extended to arbitrary high-order, are numerically very
robust and allow full h-p adaptivity.

The basic idea of DFET is to discretise the time domain
in several elements, and represent on each element both the
states and controls as polynomials. The differential equations
are not directly satisfied on the nodes like in the various col-
location methods. Instead, they are first recast in weak form.
This important step ensures that the resulting formulation is
mathematically correct even in the presence of discontinuities
for the dynamics within an element. The transcription process
also translates the objective function and the other boundary
and path constraints. The original problem is thus converted
into a finite dimensional problem, which can be solved di-
rectly through one of the several NLP solvers available.

In the past decade, DFET has been successfully used to
solve a range of difficult problems: from the design of low-
thrust multi-gravity assist trajectories to Mercury [11] and
the Sun [12], to the design of weak stability boundary trans-
fers to the Moon, low-thrust transfers in the restricted three
body problem and optimal landing trajectories to the Moon
[6]. More recently they have been used to perform multi-
objective optimal control of spacecraft [2, 4], ascent trajecto-
ries of launchers [3], or abort trajectories of reusable launch
vehicles [13, 5].

The significant flexibility of DFET has been recently ex-
ploited by Ricciardi and Vasile [14] to devise a new scheme.
By using a new set of basis functions, the new DFET method
is able to completely remove the spurious oscillations orig-
inating from a sharp variation of the controls, like in case
of a bang-bang control solution. In addition a theorem was
proved, which guarantees the satisfaction of inequality path
constraints for all times if this new version of DFET is em-
ployed and the feasible region of the path constraints is con-
vex.

All these features make DFET a very powerful and gen-
eral transcription method, with unique characteristics which
make it particularly suited for space applications.

2.2. MACS

MACS is a memetic algorithm to solve multi-objective opti-
misation problems. It was proposed some time ago to solve
robust optimisation problems in space mission design [15,
16], where the location of global optima is particularly im-
portant and challenging.

In MACS, a population of virtual agents is deployed at
random locations in the search space. Each agent locally
explores its neighbourhood performing a set of local search
actions, also named individual actions. The individual ac-
tions are Inertia, Pattern Search and Differential Evolution.
Each agent performs each action sequentially until an im-
provement is registered. A combination of Pareto dominance
and Tchebycheff scalarisation is employed to select potential
improvements towards the Pareto front. Then the population
as a whole performs a set of social actions, to concurrently ad-
vance towards the front. An external archive is used to store
the current best representation of the Pareto set.

Previous studies by Vasile and Zuiani [17, 18, 19, 20]
showed the effectiveness of this approach on different bench-
mark and challenging real problems, testing numerous strate-
gies both for the individual and the social actions. MACS
was successfully used for the design of space missions for the
removal of space debris by means of low-thrust, many rev-
olutions orbits, and for the design of the initial, low-thrust
rising phase for the technology demonstrator mission DES-
TINY. Ricciardi and Vasile [21] then introduced a new archiv-
ing algorithm able to improve the spreading of the solutions
on the Pareto front. This modification, together with addi-
tional modifications on the heuristics employed by MACS,
allowed to further improve the results of the optimiser.

Since then, MACS has been used to solve complex opti-
misation problems like the optimal deployment strategies for
a constellation of satellites [1], the optimisation of an asteroid
deflection mission through laser ablation [22] the multi-target
space debirs removal mission of the 9th edition of the Global
Trajectory Optimisation Competition [23], and, combined for
the first time with DFET to solve multiobjective optimal con-
trol problems [2].

2.3. NLP

NLP solvers are gradient based solvers for constrained non-
linear optimisation. Several high quality, open source and
commercial implementations are available. These methods
are able to tackle problems with millions of variables and
constraints. If the problem has a good sparsity pattern, like
in case of optimal control problems, these methods are able
to produce a solution in a matter of seconds to hours even on
an ordinary desktop.

The main strength of NLP methods is their ability to guar-
antee both a tight satisfaction of the constraints and the local
optimality of the solution. However, their local nature means
that they require an initial guess and can converge to an op-



timal solution which is far from the global one. For this rea-
son, MODHOC employs a combination of NLP solvers and
MACS to synergistically leverage the respective strength of
the algorithms: the NLP solvers produce fully feasible and
locally optimal solutions, while MACS automatically gener-
ates guesses for the NLP, provides global search capabilities
and retains a set of Pareto optimal solutions.

To solve a multi objective optimal control problem,
MODHOC first transcribes it using DFET. MACS then pro-
duces random first guesses for the solutions through Latin
Hypercube Sampling: these guesses are passed to the NLP
solver, which tries to make them feasible by solving a feasi-
bility problem. These solutions are passed back to MACS,
which employs its dominance and Tchebychev scalarisation
criteria to evaluate the quality of the solutions and store them
in its archive. MACS then employs its heuristics to generate
new candidate solutions, which are passed back to the NLP
to restore feasibilty. Its important to highlight that MACS
takes a fully feasible solution and only changes its static and
control variables. Thus the NLP receives a good warm start
solution and typically takes a fraction of a second to return a
new fully feasible solution. This way, global exploration is
performed and a Pareto front is produced.

In addition, once every user specified number of itera-
tions, the NLP solver is invoked in a different mode, with
the task of refining the solutions and guaranteeing local op-
timality. Since the NLP solver is inherently single objective,
the way the various objectives are combined to produce a
single objective problem is of paramount importance. In this
phase MODHOC employs the Pascoletti-Serafini scalarisa-
tion, which can be seen as a constrained but continuous and
differentiable form of the Tchebychev scalarisation. Thus,
MODHOC has the unique capability of performing both
global and local search, employing the more suitable scalari-
sation scheme depending on weather it is performing global
or local search, and seamlessly transition between the two
equivalent scalarisation schemes. More details about the
implementation can be found in [5].

This way, MODHOC has been able to automatically pro-
duce Pareto optimal solutions of problems with known single
objective solution, like the reentry of a shuttle like vehicle,
the maximum energy orbit rise of a spacecraft and the mini-
mum time transfer to rectilinear path [4, 5]. In addition, it was
able to solve complex coupled vehicle and trajectory design
problems without requiring any user supplied guess [5].

2.4. Treatment of Discrete variables

Since MACS was initially conceived to solve problems with
continuous variables only, its heuristics have been extended in
order to deal also with integer variables. The heuristics have
been modified in such a way that after their application the
value of the discrete variables remains integer and within the
allowed bound, while leaving unchanged the behaviour of the

heuristics when operating on the continuous variables. This
enables MACS to directly treat nonlinear mixed integer multi
objective optimisation problems.

However, MODHOC relies on the NLP solver in order to
ensure tight satisfaction of the constraints. For this reason,
when the solutions are passed to the NLP problems, the dis-
crete variables are relaxed and treated as continuous. This
allows the NLP solver to change the value of the relaxed vari-
ables, if this is needed to get a feasible solution. After a solu-
tion of the relaxed problem is found an additional constraint
is imposed on each relaxed variable xi in order to force them
to assume only integer values within the prescribed bounds:

sin(πxi) = 0 Li ≤ xi ≤ Ui (1)

This constraint is smooth and is satisfied only for integer val-
ues of the relaxed variable xi. The NLP solver is run again
with the imposition of this constraint, and the fully feasi-
ble non-relaxed solution is returned to MACS. This way, no
heuristics are needed to round the relaxed variables.

3. APPLICATIONS

This section shows three example applications: a three objec-
tive design and trajectory optimisation problem of a launch
vehicle, a two objective trajectory optimisation from LEO to
GEO, and a two objective planning and scheduling problem
of a simplified car model, where three target destinations need
to be visited but the order in which they are visited is not spec-
ified a priori.

3.1. Three-objective Ascent Problem

This test case is the multi-objective, multidisciplinary design
of a rocket-powered, two-stage launch vehicle optimised for
the ascent to orbit. The vehicle is air dropped from a carrier
aeroplane flying at 200 m s−1 at an altitude of 10 km east-
bound along the equator, with an initial flight path angle of
10◦. It has to deliver a 500 kg payload to a 650 km alti-
tude circular equatorial orbit. The aim of this test case is to
minimise the initial gross mass of the vehicle, examining the
trade-off between the engine sizing and dry masses of each of
the two stages. The vacuum thrust ratings of the two rocket
engines are set as optimisation variables, which through the
mass model directly affect the dry masses of the two vehicle
stages. Similarly, the mass of propellant used in each stage
also affects the dry mass of each stage by altering the mass
of the tanks. As the focus here is on the vehicle design of the
mass and propulsion systems, a simple aerodynamic model
was used for both stages: for the first CL = 0, CD = 0.1 and
Sref = 73.73 m2, while for the second CL = 0, CD = 0.01
and Sref =1 m2.

The ascent trajectory was divided into two phases: Phase
1 is the ascent of the integrated vehicle (combined first and



second stage vehicles), and Phase 2 is the ascent of only the
second stage vehicle.

3.1.1. Structural mass models

For each stage, the dry mass was computed as a function of
the engine mass and propellent mass. The vacuum thrust of
the engines was used to estimate their structural mass based
on an empirical linear relationship of existing commercial en-
gines. The mass model was developed in parallel for an indus-
trial vehicle and cannot be released publicly [24]. For the first
stage engine, 0 ≤ Tvac ≤ 2 MN and Isp = 332 s, while for
the second stage engine 0 ≤ Tvac ≤ 200 kN and Isp = 352 s.
Propellent masses were limited to 100 t for the first stage and
20 t for the second. The maximum gross takeoff mass for the
first stage was also assumed to be 100 t.

3.1.2. Objectives

The aim of the optimisation is to study the trade off between
propellent efficient designs and designs that require relatively
small engines. The objective functions were to minimise the
gross vehicle mass m0,1 and the two ratios between the vac-
uum thrust of the stage engine, and the gross weight at the
beginning of each phase. The thrust-to-weight metric also
gives an indication of the vehicle loads or induced acceler-
ations the vehicle experiences during flight. The higher the
ratio between thrust and mass, the higher the loads imposed
on the vehicle, thus one option is to minimise loading by min-
imising the thrust to weight ratio. Reducing the vacuum thrust
reduces the engine performance however, which requires of-
ten longer duration trajectories and more propellant, which in
turn increase the vehicle mass.

[J1, J2, J3]T =

[
m0,1,

Tvac,1

g0m0,1
,
Tvac,2

g0m0,2

]T
(2)

3.1.3. Numerical settings

The problem was discretised using 4 DFET elements of order
7 for both states and controls, and both phases, resulting in
a total of 207 optimisation variables for the outer level and
666 optimisation variables for the single level and inner level
NLP. A limit of 80000 calls to the objective vector was given
to the optimiser, 106 agents were deployed in the search space
and the same maximum number of solutions were kept in the
Archive. The initialisation of the population required between
5 seconds and 5 minutes per agent. Matching conditions be-
tween the phases were imposed on all state variables except
for the mass, for which the following instantaneous drop was
imposed at the stage separation:

m0,2 = mf,1 −mdry,1 (3)

3.1.4. Results

Figure 1 shows the 106 Pareto optimal solutions in the archive
at the last iteration, with an additional colorbar indicating
gross take-off mass. The shape of this 3D Pareto front re-
sembles a smooth half cup. The figure shows the 3D surface
in the middle, and the three orthogonal projections. As can be
seen, the algorithm found a very good spread set of solutions,
all of which are feasible and locally Pareto optimal up to the
requested 10−6 threshold.
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Fig. 1: Three-Objective Ascent: set of Pareto-optimal solu-
tions, colorbar indicates gross mass of the vehicle. The 3D
Pareto front is in the middle, with orthographic projections
shown on each coordinate plane.

Figures 2 and 3 show the altitude and velocity profiles
plus the flight path angle and throttle time histories of the
three extreme solutions of the Pareto front. The altitude, ve-
locity and throttle profiles of the minimum gross mass and
minimum first stage (Tvac,1/m0,1g0) solutions are similar,
while their flight path angles differ substantially during the
initial ascent: in both cases the first stage engine is working
at full throttle and for a comparable time, but given the rel-
atively lower thrust engine of the minimum (Tvac,1/m0,1g0)
case, the resulting flight path angle dips and becomes nega-
tive causing the vehicle to briefly lose altitude. The minimum
second stage (Tvac,2/m0,2g0) solution is instead quite differ-
ent: the first stage engine has to compensate for the relatively
small second stage engine by pushing the vehicle to a higher
altitude, velocity and flight path angle at the separation point.
The second stage engine has to operate at maximum throttle
for a comparatively longer length of time after the separation,
and has a higher throttle setting during the final circularisa-
tion burn in order to compensate for its lower thrust, as shown
in Fig. 3b. The total flight duration is also slightly longer than
the other two.

Table 1 reports the vehicle design parameters for the
Pareto extrema (i.e., the solutions that minimise each ob-



Table 1: Design parameters for the three extreme cases of the Three-Objective Ascent case

Solution Stage Initial Propellant Dry Vacuum Thrust ∆v
mass [t] mass [t] mass [t] thrust [kN] weight ratio [km s−1]

min(m0,1)
1 49.995 29.632 (59.27%) 20.363 (40.73%) 1682.611 3.432 2.836
2 8.765 7.063 (80.59%) 1.699 (19.38%) 126.100 1.467 5.664

min(Tvac,1/m0,1g0)
1 100.000 72.830 (72.83%) 27.170 (27.17%) 1930.137 1.968 4.115
2 11.789 9.717 (82.42%) 2.071 (17.57%) 200.000 1.730 6.003

min(Tvac,2/m0,2g0)
1 79.318 60.629 (76.44%) 18.689 (23.56%) 2000.000 2.571 4.565
2 4.390 3.234 (73.66%) 1.156 (26.34%) 15.124 0.351 4.606

jective individually) including a breakdown of the vehicle
masses with the relative percentage values with respect to the
stage’s initial mass, engine vacuum thrust, thrust to weight
ratio, and resulting ∆v contribution. The solution with min-
imum initial mass requires high ratios of vacuum thrust to
initial weight, though the vacuum thrust of the engines does
not reach the maximum allowed values. Propellent mass is
approximately 60% of the total mass of the first stage and ap-
proximately 80% of the total of the second stage. Total ∆v is
of 8.5 km s−1, with the first stage contributing approximately
for 2.8 km s−1 or 33% of the total, and the rest coming from
the second stage. The ratio between the payload and gross
vehicle mass is approximately 1%.

The solution corresponding to the minimum thrust to
weight ratio of the first stage requires a larger vehicle with
a substantially higher amount of propellant: its initial mass
reaches the maximum allowed value for the mass of the ve-
hicle, and is double the value of the previous case. Of this
gross mass, approximately 70% is propellant for the first
stage. The ratio between the payload mass and the initial
mass is 0.5%. The total required ∆v is 10.1 km s−1, with
6 km s−1 coming from the second stage. The second stage
engine also has the maximum possible vacuum thrust and
consumes more propellant than the previous case leading to
a high (Tvac,2/m0,2g0) at the cost of a minimised first stage
(Tvac,1/m0,1g0).

The solution corresponding to the minimum thrust to
weight ratio of the second stage requires an intermediate ini-
tial mass, approximately 60% more than the minimum initial
mass case. The ratio between the payload mass and the initial
mass is 0.63%, and the required ∆v totals 9.1 km s−1, evenly
spread between the two stages. This is true also for the pro-
pellant mass, representing approximately 75% of the total of
each stage and totalling twice as much as the minimum gross
take-off mass case. The first stage engine has to compensate
by taking the maximum allowed value of vacuum thrust, with
the resulting thrust to weight ratio being higher than in the
previous case, leading to higher induced accelerations. How-
ever, the second stage is significantly lighter than the other
solutions both in terms of dry mass and propellent mass, and
its engine has a vacuum thrust one order of magnitude smaller
than the previous solutions.

(a)

(b)

Fig. 2: Three-Objective Ascent: time-history of a) the alti-
tude and b) the velocity for the three extreme solutions of the
Pareto front in Fig. 1. The + indicates the stage separation
point.



(a)

(b)

Fig. 3: Three-Objective Ascent: time-history of a) the flight
path angle and b) the throttle for the three extreme solutions of
the Pareto front in Fig. 1. The + indicates the stage separation
point.

3.2. Two objective LEO to GEO transfer

This test case is a multi-objective extension of a problem pre-
sented in [25], the trajectory optimisation for a transfer from
LEO orbit to GEO orbit. To remain consistent with the origi-
nal problem, in this case the Imperial System was used. The
vehicle is controlled by two finite length impulses of a chemi-
cal engine. The engine has an Isp of 300 seconds and can only
operate at full thrust of 1.25 lbs, but the duration of the thrust-
ing arcs and the direction of thrusting are free. The space-
craft has a notionary mass of 1 lbs, and is orbiting earth at
an altitude of 150 Nautical miles along a circular orbit with
28 degrees of inclination. In order to avoid any singularity,
the dynamics is formulated using the modified equinoctial el-

Fig. 4: Pareto front for the LEO to GEO transfer

ements as in [25]. The objectives of the optimisation are to
minimise the transfer time, and to maximise the final mass.

3.2.1. Numerical settings

The problem was formulated as a 4 phases problem: phase 1
and 3 model the coasting arc, and are discretised with 3 DFET
elements of order 6. Phases 2 and 4 are thrusting arcs, but
due to their expected short duration they are discretised with
a single DFET element of order 6. Continuity of the state
variables was imposed between the phases, and the final time
of each phase was left as a free parameter to be determined
by the optimiser. MODHOC was run for a total of 50000
function evaluations, with gradient based refinement taking
place every 10 iterations. 20 points on the Pareto front were
sought.

3.2.2. Results

Figure 4 shows the Pareto front: as it is evident, lower mission
times imply lower final mass. Solution marked with 1 coin-
cides with the solution found in the reference, corresponding
to the maximum final mass and a transfer time of 21704 sec-
onds. The transfer time of the reference solution took 21683
seconds. This slight difference can be attributed to the differ-
ence of the integration schemes, the NLP solvers and settings
used, and the fact that the solution in the reference comes after
4 mesh refinement iterations. However, the difference in final
time is lower than 0.1%. The Pareto front also suggests an in-
teresting trade-off region in solutions marked between 1 and
7, where the transfer time can be reduced by approximately
10% with a reduction of the final mass of less than 1%.

Figure 5 represents all the 20 trajectories. Light blue and
green trajectories correspond to solutions 1 to 6, characterised
by higher mission times and higher final mass. Blue and pur-
ple solutions correspond to solution 7-19, while solution 20



Fig. 5: Trajectories for the LEO to GEO transfer

is the black one, which is the minimum mission time solution
and is markedly different from the others

3.3. A planning and scheduling problem

This section describes a non space related application. It is
a multi-objective extension of a problem presented in [26]:
a vehicle, described by a simple two dimensional dynamic
model, starts from the origin of the plane and has to visit three
target destinations before finally returning to its starting po-
sition. It is controlled by the magnitude of the acceleration
and by the steering rate, both of which are limited. The or-
der in which the three targets are to be visited is not specified
a priori but has to be found as part of the solution, which
in the original reference had to minimise the total mission
time. The vehicle has to pass on each target point without
any restriction on the velocity or direction of velocity at the
rendez-vous, while at the final time it had to be at rest at the
original position. This problem can be seen as an extension
of a classic Travelling Salesman Problem, where the presence
of a dynamical model for the Salesmen significantly changes
the nature of the problem and its complexity. The problem
is here extended with a second objective minimising the total
energy expense, measured as the integral of the square of the
instantaneous acceleration.

3.3.1. Numerical settings

The problem was divided into four phases. At the end of the
first three phases, conditions were imposed to enforce the po-
sition of the car to match with the position of one of the three
targets, while for the last phase the destination was the origin,
with zero final velocity. A special set of constraints was im-
posed to deal with the categorical choice of the destinations,

including the constraint that each target must be visited only
once. On each phase, the problem was discretised using 3
DFET elements of order 7. MODHOC was run for a total of
40000 objective function evaluations, with 10 agents to find
10 points on the Pareto front.

3.3.2. Results

Figure 6a shows the Pareto front. Solution 10 corresponds to
the minimum time solution computed in [26]. The solution
computed with MODHOC has a minimum time of 7.6387 s,
while the solution computed in the reference has a minimum
time of 7.6166 s. The difference is below 0.3% and can be at-
tributed to the different integration schemes and resolutions.
The shape of the trajectory, of the control law and of the target
visiting order is the same: the first solution to be visited is the
bottom right one and then proceeds counter-clockwise. The
authors of the reference noted the presence of several local
minima even for the same set of integer variables, but did not
explain with which approach they found their best solution.
With MODHOC, this comes naturally as part of the global ex-
ploration and the simultaneous treatment of both discrete and
continuous variables. The minimum energy solution takes, as
expected, the maximum allowed time of 15 seconds. All so-
lutions visit the targets in the same order. Figure 6b shows
the trajectories of the 10 computed solutions and the 3 targets
to be visited, marked as black circles: as it is evident, min-
imum energy solutions are very close to straight trajectories
between the targets, while minimum time solutions are longer
and with more pronounced curves. Figure 7a shows the mag-
nitude of the velocities over time and the instant at which ev-
ery solution encounters a target is marked with a +. It allows
to understand an interesting aspect of the problem: since the
velocity of the vehicle is allowed to become negative, all so-
lutions proceed forward until they visit the second target. The
velocity at the second target is zero only for solutions 1 to 5,
while for the other solutions the vehicle still has positive ve-
locity but is decelerating. After that turning point the vehicle
proceeds backwards, as it is possible to see from the negative
value of the velocities. This interesting and unexpected fea-
ture is telling that the steering rate of the vehicle is insufficient
to visit all the three targets by going forwards only without pe-
nalising too much the mission time. It is instead more efficient
to proceed forwards for a period of time, and then backwards
for the second part of the mission. Figure 7b shows the con-
trol profile for the acceleration and again the instants of time
where the targets are encountered is marked with a +. As ex-
pected, the minimum time solutions corresponds to a double
bang-bang solution, i.e. a maximum acceleration followed by
a minimum deceleration and then again a maximum acceler-
ation until the vehicle stops. The minimum energy solution
instead is composed of two linear profiles of opposite slope,
while the solutions in between have steeper linear profiles or
different switching times for their bang bang solutions.



(a)

(b)

Fig. 6: Dynamic planning and scheduling problem: a) Pareto
front, b) Trajectories. Circled indicate target destinations.

4. CONCLUSIONS

This paper presented MODHOC, a direct method for solv-
ing multiobjective hybrid optimal control problems. By em-
ploying DFET, a general and powerful transcription method,
it is able to solve nonlinear optimal control problems with
user defined dynamical models and path constraints. MACS,
the memetic multiobjective optimisation algorithm, allows to
globally explore the search space, automatically generate ini-
tial guesses and return an evenly spread set of solutions. The
smart coupling with the NLP solver through the bi-level and
the single level approaches allows for the strict satisfaction of
general nonlinear constraints, and to guarantee local optimal-
ity of the solutions. The simultaneous treatment of discrete
and continuous variables allows to treat complex mixed inte-
ger problems, where the selection of discrete variables does

(a)

(b)

Fig. 7: Dynamic planning and scheduling problem: time his-
tories for a) velocities and b) accelerations. + indicate when
a target destination is visited.

not imply the existence of a unique optimal solution depend-
ing only on the continuous variables. Moreover, it is possible
to treat problems with nonlinear constraints involving both
the continuous and the integer variables. The paper show-
cased three different applications, each one characterised by
different kinds of complexity: a three objective coupled sys-
tem and trajectory design for a two stage launch vehicle, a
two objective trajectory design for a LEO to GEO transfer,
and a two objective mixed integer planning and scheduling
problem. MODHOC returned evenly spread sets of solutions,
allowing to understand interesting relations between the ob-
jectives and the underlying physics of the problem. In several
cases, the results obtained also included unexpected but use-
ful features, giving even more insight to the decision makers.
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