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ABSTRACT

This work presents a practical and efficient semi-analytical
framework for the precise modelling of the relative motion in
low Earth orbits. Given the treated scenario, the orbital pertur-
bations due to non-homogeneous Earth mass distribution and
aerodynamic drag are taken into account. In accord to recent
successful formation-flight experiments, the relative orbital
elements parametrization is employed. And the modelling of
the relative dynamics is further enhanced to take into account
the effects of the whole geopotential. The paper describes
the main building blocks as well as their interfaces, since the
key aspect to achieve precision is to set up a fully consistent
framework. Applications of the proposed tool range from the
synthesis of onboard guidance navigation and control algo-
rithms to precise relative orbit determination.

Index Terms— Formation flying, relative orbital ele-
ments, semi-analytical methods, orbital perturbations.

1. INTRODUCTION

Several multi-satellite mission architectures as formation-
flying, spacecraft clusters and active debris removal require
accurate modelling of the relative motion between objects in
neighbouring orbits. The closer the region of interaction, the
higher the level of autonomy the Guidance Navigation and
Control (GNC) system may need to accomplish the mission’s
tasks. Hence, a precise semi-analytical framework reveals a
convenient tool to support the development of efficient rela-
tive GNC algorithms. In particular, this work focuses on the
Low Earth Orbits (LEO) region, with regard to applications
as distributed sensors for Earth observation a/o noncooper-
ative rendezvous to approach large pieces of debris. The
customisation to the LEO environment impacts the choice of
the adopted parametrization as well as the orbit perturbations
to be included in the modelling.

In order to describe the relative dynamics, Orbital El-
ements (OEs) based approaches are often exploited (see
the recent survey [1]), following the seminal works [2, 3],
which recognised the advantages of linearising with respect
to the OE set of the chief satellite. Generally, working in
an OE space allows reducing the linearisation errors in the

initial conditions, simplifies the inclusion of orbital pertur-
bations, and allows exploiting celestial mechanics methods
to identify the most efficient locations of the orbit correc-
tion manoeuvres when synthesising relative guidance and
control algorithms. The state variables’ set can either be con-
stituted by differences of OE between the deputy and chief
satellites or functions thereof. In both cases several OE fam-
ilies can be adopted, offering different levels of singularity
in their definitions (e.g., classical, non-singular, equinoctial,
Hoots elements) or supporting a canonical structure (e.g.,
Delaunay, Poincaré, Whittaker elements). Indeed the choice
of which parametrization to adopt should be driven by the
domain of application (singular behaviour), the concise-
ness/compactness of the related dynamical system, and the
straightforwardness in the geometrical visualization of the
relative orbits.

In view of the aforementioned design criteria, here the
Relative Orbital Elements (ROEs) inherited from the co-
location of geostationary satellites [4] and afterwards adapted
to the formation-flying field [5] are employed. These are
functions of non-singular elements that, despite their name,
are singular for zero-inclinations orbits, which however have
almost no practical use in the LEO region. On the other
hand, in addition to the OE-based common positive charac-
teristics, these ROEs offer the following advantages. First,
ROEs merge the physical insight in the absolute orbits with
a straightforward visualisation of the relative motion, as they
are also trivial functions of the constants of motion of the
Hill-Clohessy-Wiltshire (HCW) equations [6]. Second, there
exist a direct relationship between the location of delta-v opti-
mal manoeuvres and changes in ROEs: in-plane/out-of-plane
corrections are to be executed at mean arguments of lati-
tude corresponding to the phase angle of the total change of
respectively the relative eccentricity/inclination vectors [7].
Moreover, the associated delta-v cost is proportional to the
length of such total ROE change. Third, recalling their origin,
ROEs allow expressing in a simple way the one-orbit mini-
mum satellites’ distance normal to the flight direction. This
quantity plays a crucial role to assess the intrinsic safety of
a formation, with direct exploitation into collision avoidance
algorithms. For almost-bounded relative orbits, the mini-
mum radial-normal distance is related to the phasing of the



relative eccentricity/inclination vectors [8]. Its analytical ex-
pression extended to drifting relative orbits, resulting from
non-vanishing relative semi-major axis encountered during
a rendezvous or produced by the action of the differential
aerodynamic drag, is presented in [9].

The effectiveness of the adopted parametrization has been
already demonstrated in several applications that recently
flew in LEO, ranging from spaceborne GNC systems for
autonomous formation keeping [10, 11], to GNC systems
for spacecraft rendezvous, either ground-in-the-loop [12] or
autonomous onboard [13]. This work focuses on further en-
hancing such framework, with key regard to precision. The
need of improving the relative motion long-term accuracy, in
fact, is for example required by angles-only initial relative
orbit determination, angles-only onboard relative navigation,
and long-term relative guidance policies. Above all, when-
ever flight data are processed, the framework consistency
becomes a must to guarantee precision. When working in
a pure simulation environment, where the dynamics of both
satellites is propagated in the same fashion a/o observations
are modelled using such simulated dynamics, in fact, the
differential nature of the relative problem makes inaccura-
cies/inconsistencies to cancel with each other, leading to an
overestimation of the true precision of the framework. To
achieve an overall realistic accuracy one has to address spe-
cific single functions as well as their interfaces. The main
building blocks, related to the aforementioned specific func-
tions, are: the extraction of mean orbital elements, the relative
dynamics including the effects of the terrestrial geopotential,
and the relative dynamics subject to differential aerodynamic
drag. In the sequel only the latter two aspects are explained
in details. Accordingly, the main contributions of this work
are the provision of a compact first-order dynamical system
including the whole set of terms of the geopotential, which
gives origin to a closed-form state transition matrix. Sec-
ondly, the modelling of the differential aerodynamic drag
is critically discussed to show possible methods and their
limitations, and to provide operational directives to use the
proposed framework into realistic applications.

Focusing on the LEO environment, some functionalities
of this framework exploit the assumption of small eccentricity
of the chief orbit (i.e., near-circular problem). Nevertheless,
some of the achieved results are actually valid for the general
eccentric case, whereas others can be promptly adapted with
moderate effort.

2. FRAMEWORK DEFINITION

This section introduces the structure of the framework with
the support of Figure 1, where two possible sets up - propa-
gation/guidance and navigation - are shown.

From the first outlook of Figure 1 one can note that a
mixed nature of variables are involved. Recalling the advan-
tages mentioned in the introduction, in fact, the core part of
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(a) Propagation/guidance set up

���� �����
���	


�����

���
	�
��

��
����������

���

���

�
�
��

ε� ε�

ε�

ε�? δα
��

(b) Navigation set up

Fig. 1. Structure of the framework.

the relative algorithms, here represented by white-background
boxes, are expressed in orbital elements (more precisely in
mean OEs). At the same time, other pieces of information,
like the satellites’ state and the sensors’ observations are con-
veniently expressed in Cartesian frames. In LEO, for ex-
ample, the absolute orbit of a satellite is usually estimated
onboard by a navigation filter that processes GPS position
data. And out of such absolute navigation solution, the corre-
sponding mean OE set has to be computed to properly inter-
face the relative GNC algorithms. Information coming from
the true external environment is represented by single-colour-
background boxes. The remaining double-colour-background
boxes identify the bridging functionalities, which link Carte-
sian to OE states, as well as time (i.e., synchronization) and
adopted reference systems. Regarding the latter aspect, for
example, estimates and observations are often expressed in
the Earth Mean Equator and Equinox of J2000 (EME2000)
reference system given the availability of star catalogues in
that frame [14]. The osculating/mean elements conversions,
instead, require a true of date (TOD) reference frame, coher-
ently with the arrangement of the geopotential harmonics with
respect to the terrestrial equator. If all these interfaces are
not properly implemented, additional artificial sources of er-
ror degrade the overall accuracy of the framework. Referring
to Figure 1, this can be visualised following the chain of ac-
tions that bring to ỹEME and ĥ, respectively compared to yEME
and h. In particular, from the top-view (a) set up, the impact



of the errors in the two-way transformations (i.e., ε1 and ε4)
can be assessed looking at the inconsistencies between ỹEME
and yEME for the chief satellite. Moreover, ε1 corrupts the
initial value of the relative state (i.e., green signal input to the
Rel. Dyn. block) prior to its propagation over time.

Recalling the introduction, the implemented framework
serves several formation-flying related applications. In the
propagation/guidance set up one aims at synthesising a con-
trol policy that brings the relative trajectory close to an aimed
reference one (i.e., green state), minimising the inconsistency
in the deputy state, to let the mission instruments operating in
the most accurate conditions. In relative navigation, one esti-
mates the relative state at a time, so that the inconsistency in
the observations is minimised. This paper addresses solely
the model of the relative dynamics topic; hence the errors
brought by the guidance and measurement modelling blocks -
highlighted with dashed borders - are not considered. The re-
mainder of the article presents the semi-analytical modelling
of the Rel. Dyn. box to minimise the impact of ε2. Never-
theless, the accuracy obtained in the presented plots take into
account a realistic ε1, making the environment suitable for
post-processing of real flight-data.

3. EARTH MASS DISTRIBUTION

The primary perturbation to be included in the LEO envi-
ronment is the one produced by the non-homogeneous Earth
mass distribution. Earth gravity models, computed from mea-
surements and satellite observations, are released in the form
of normalised gravitational coefficients up to a certain degree
and order, corresponding to the spherical harmonics of the
gravity potential (i.e., geopotential). Following the approach
of the geometric method of [3], the relative motion problem
is conveniently split into first the extraction of the elements’
set with removed short- and long-periodic oscillations, sec-
ond the evaluation of the relative dynamics for such mean
elements’ set. Coherently, these two aspects are treated here-
after.

3.1. Osculating/Mean orbital elements conversion

The computation of mean OEs is based on averaging tech-
niques and several analytical orbital theories are given in the
literature [15]. Within this framework, considering the for-
mation flying application, the LEO scenario, and suitability
for onboard implementation, an algorithm that includes a
user-definable order and degree terms of the geopotential and
that introduces small errors in the inverse (i.e., osculating-
to-mean) transformation is used. Moreover, as the drift in
the along-track direction is proportional to the relative semi-
major axis, the highest precision is required only for such
component of the OE set (recall the impact of ε1) . As a
result, the employed algorithm makes use of a second-order
Lie-series based approach, closed form in eccentricity, to

cancel the short- and long-periodic terms due to the domi-
nant J2 term from the non-singular OE set. Afterwards, the
semi-major axis component only is refined through the first-
order Kaula method up to the required order and degree term.
The so obtained algorithm is compact, fully analytical, and
non-affected by singularities.

3.2. Relative mean linearised dynamics

The relative mean motion is parametrised by the following set
of dimensionless ROEs:

δα = f(αd, ac, ic)− f(αc, ac, ic)

= (δa, δλ, δex, δey, δix, δiy)
T (1)

where

f(α, ac, ic) = (a/ac, u+ Ω cos ic, ex, ey, i,Ω sin ic)
T (2)

Here α = (a, e, i,Ω, ω, u)T is the set of classical Keplerian
orbital elements, u = ω+M is the spacecraft mean argument
of latitude, ex = e cosω, ey = e sinω, and the subscripts “d”
and “c” denote the deputy and chief satellites. The vectors
(δex, δey) and (δix, δiy) are respectively known as the rela-
tive eccentricity and inclination vectors.

After having applied the transformations of section 3.1,
the only orbital elements that vary over time are:

Ω̇ = f̃(a, e, i, J2, J
2
2 , J4, J6, ..., Jp)

ω̇ = f̃(a, e, i, J2, J
2
2 , J4, J6, ..., Jp)

Ṁ = f̃(a, e, i, J2, J
2
2 , J4, J6, ..., Jp)

(3)

as the secular perturbations are induced by only even zonal
harmonics. The f̃ functional expressions up to J6 can be re-
trieved in [16]. Note that J2

2 , J4, and J6 are of the same
order of magnitude, and since for the relative motion one has
to regard the relative secular variations of (3), the contribu-
tions provided by terms of order greater than 6 are negligible
indeed.

In order to recover the plant matrix A of the first-order
relative dynamics in ROEs

δα̇ = A(αc) δα (4)

the same approach of [17] is used. According to it,

d

dt
(δαi) =

d

dt
(fi(αd)− fi(αc)) ≈

∑
j

∂gi
∂αj

∣∣∣∣
c

∆αj (5)

where gi = dfi/dt and the linearised expressions of δα as
function of ∆α are given by:

δa = ∆a/ac δλ = ∆u+ ∆Ω cos ic
δix = ∆i δiy = ∆Ω sin ic

(6a)

δex = −eyc∆ω + cosωc∆e
δey = +exc∆ω + sinωc∆e

(6b)



By considering (3) and the relative state definition of (2), only
the partials with respect of a, e, ω, and i for the quantities:

g2 = Ṁ + ω̇ + Ω̇ cos ic g3 = −eyω̇
g6 = Ω̇ sin ic g4 = +exω̇

(7)

need to be computed. Nevertheless, when re-arranging the
equations using (6b), some terms simplify leaving only the
partials with respect to a, e, and i to remain. Regarding Ω̇, ω̇,
and Ṁ , Tables 1 and 2 present the structures of such partials.
There, K2 = J2(R⊕/a)2, K22 = K2

2 , K4 = J4(R⊕/a)4,
K6 = J6(R⊕/a)6, R⊕ is the Earth radius, η =

√
(1− e2),

and n is the unperturbed mean motion.

Table 1. Structure of the partials for Ω̇ and ω̇

∂
∂a , Ω̇ or ω̇ ∂

∂e , Ω̇ or ω̇ ∂
∂i , Ω̇ or ω̇

J2 cK2
n
η4

1
af(i) cK2

n
η6 ef(i) cK2

n
η4 f(i)

J2
2 cK22

n
η8

1
a f̂ cK22

n
η10 ef̂ cK22

n
η8 f̂

J4 cK4
n
η8

1
a f̂ cK4

n
η10 ef̂ cK4

n
η8 f̂

J6 cK6
n
η12

1
a f̂ cK6

n
η14 ef̂ cK6

n
η12 f̂

Note: c numerical coefficients, f̂ = f(i, e2), different
for each entry.

Table 2. Structure of the partials for Ṁ .

∂
∂aṀ

∂
∂eṀ

∂
∂iṀ

J2 cK2
n
η3

1
af(i) cK2

n
η5 ef(i) cK2

n
η3 f(i)

J2
2 cK22

n
η9

1
a f̂ cK22

n
η11 ef̂ cK22

n
η9 f̂

J4 cK4
n
η7

1
a f̂ cK4

n
η9 ef̂ cK4

n
η7 f̂

J6 cK6
n
η11

1
a f̂ cK6

n
η13 ef̂ cK6

n
η11 f̂

Note: c numerical coefficients, f̂ = f(i, e2), different
for each entry.

In view of assembling the elements in the plant matrix A,
the following notation is introduced:

∑
p

(
∂g

(p)
i

∂αj

)
= Gi,αj (8)

where p is the index of the ordered set {J2, J
2
2 , J4, J6} col-

lecting the considered zonal contributions. Accordingly, the

non-zero terms of A(α) are:

A21 = aG2,a A61 = aG6,a

A23 = cosωG2,e A63 = cosωG6,e

A24 = sinωG2,e A64 = sinωG6,e

A25 = G2,i A65 = G6,i

A31 = aG3,a A41 = aG4,a

A33 = cosωG3,e A43 = cosωG4,e

A34 = sinωG3,e A44 = sinωG4,e

A35 = G3,i A45 = G4,i

(9)

Therefore, the so obtained linearised system is time-variant
due to the presence of sine and cosine of ω in the relative
eccentricity vector lines. A linear time-invariant system can
be obtained using the change of variables introduced in [18]
to generalise the results of [17] to eccentric reference orbits.
According to it,

δα′ =
(
δa, δλ, δe′x, δe

′
y, δix, δiy

)T

δe′x = + cosω δex + sinω δey
δe′y = − sinω δex + cosω δey

(10)

and the linearised plant matrix Ã for the system in the vari-
ables δα′ becomes:

Ã21 = aG2,a Ã61 = aG6,a

Ã24 = G2,e Ã64 = G6,e

Ã25 = G2,i Ã65 = G6,i

Ã41 = aG4,a/ cosω

Ã43 = G4,e/ cosω − ω̇
Ã45 = G4,i/ cosω

(11)

where cosω simplifies with the corresponding term in g4 and
ω̇ is function of a, e, and i only (see Table 1). Moreover, Ã
is nilpotent of order 2, making its exponential matrix equal to
(I + Ã). As performed in [18], the State Transition Matrix
(STM) of the original system can be computed as:

Φ(αc, tf, t0) = J−1(αc(tf))
(
I + Ã(αc)

)
J(αc(t0)) (12)

where only ωf = ω0 + ω̇(tf − t0) is required at time tf and J
is the change of variables of (10). Therefore, the closed-form
STM for the linearised relative motion including the geopo-



tential term till element p is expressed by:

ΦJall(αc, dt) = ΦHCW(αc, dt) + dt·
1 0 0 0 0 0

aG2,a 1 cω0G2,e sω0G2,e G2,i 0
φ31 0 φ33 φ34 φ35 0
φ41 0 φ43 φ44 φ45 0
0 0 0 0 1 0

aG6,a 1 cω0G6,e sω0G6,e G6,i 1


φ31 = −a(sωf/cω0)G4,a

φ33 = + cos(ω̇dt)/dt− e∂ω̇∂e cω0sωfdt

φ34 = − sin(ω̇dt)/dt− e∂ω̇∂e sω0sωfdt

φ35 = −(sωf/cω0)G4,i

φ41 = a(cωf/cω0)G4,a

φ43 = sin(ω̇dt)/dt+ e∂ω̇∂e cω0cωfdt

φ44 = cos(ω̇dt)/dt+ e∂ω̇∂e sω0cωfdt

φ45 = (cωf/cω0)G4,i

(13)

where cν and sν respectively stand for cosine and sine of ν,
dt = tf − t0, and ΦHCW is the STM of the unperturbed prob-
lem given for example in [17]’s equation (22). Note that
when neglecting terms proportional to e from (13), one finds
exactly the STM used in the flight algorithms of the AVANTI
(Autonomous Vision Approach Navigation and Target Identi-
fication) experiment (see equation (6) of [13]). The following
comments apply to the obtained results:

1. the procedure of building A is valid for whatever or-
der of the geopotential, even if at practical level orders
greater than 6 produce negligible contributions;

2. the closed-form STM of (13) has the same validity
range of the whole model (i.e., first-order), and there-
fore it is extremely helpful for developing onboard
algorithms. In the LEO region where differential drag
can be neglected (e.g., the PRISMA scenario [19, 17]
at 750 km of height), equation (13) provides a fully an-
alytical formulation precise over large periods of time,
hence usable for semi-analytical relative navigation
and guidance techniques;

3. if the approximation of small e can be applied (i.e., very
small eccentricity a/o short time scales), it is consistent
to neglect also the terms of orders greater than J2;

4. when instead the combination of chief eccentricity and
considered time scales would require a more accurate
modelling, then the STM of (13) is available, with
similar formal structure and properties of the simple
near-circular J2-only case. Indeed, one should properly
initialise the propagation as suggested in section 3.1:
errors in the initial conditions, especially in the rela-
tive semi-major axis, would nullify the improvement

offered by equation (13), and therefore it would not be
justified to introduce its complexity with respect to the
J2-only formulation;

5. equation (13) is valid also for the eccentric reference
orbit case.

Note that first-order in the δα variables, actually required
only small δa, δex, δey , and δix: a similar orbit, a moder-
ate relative semi-major axis, and no limitations in along-track
direction (recall the intrinsic advantage of linearising in the
OE space). This indeed is always the case for the classical
domain of formation-flying, where large drifts would not be
applied for operations’ safety.

Figure 2 shows an example of propagation accuracy
achievable when considering a 6 × 6 order-degree gravity
potential. In this case, the chief satellite flies at 500 km of
altitude with eccentricity 0.001. The initial osculating ROEs
are aδα = (−200.0, 4500.0, 0.0, 250.0, 0.0, 300.0)T meters
and the propagation is carried out over three days. Errors
are computed with respect to the ROEs obtained integrating
numerically also the deputy dynamics. The black markers
identify the solution from the closed-form small-eccentricity
J2 only STM, grey markers the numerically integrated semi-
analytical solution of equation (9), whereas blue dots the
solution from the closed-form J-all STM of (13) (up to J6).
Note that, with a drift corresponding to 200 m of relative
semi-major axis, after three days the mean along-track sep-
aration reaches 90 km (with 10 meters of accuracy). For
this scenario, as the size of the relative orbit is few hundred
meters, the linear model remains very precise, and the small-
eccentricity assumption works very well. Indeed, the effect
on the relative dynamics of the higher terms of the geopo-
tential are providing a minor contribution; their importance
appears over very large time scales. Nevertheless, to obtain
such performances one has to be extremely precise in the
initial mean ROEs (especially in δa). Here, in fact, to obtain
such an accuracy the osculating-to-mean transformations in-
clude the all 6× 6 elements, that is the same order and degree
of the assumed reference dynamics.

4. DIFFERENTIAL AERODYNAMIC DRAG

The second major perturbation to be included in the LEO
environment is the one produced by the differential aerody-
namic drag between the deputy and the chief satellites. Dif-
ferently to the geopotential case, here additional parameters
have to be included to take into account the geometry of the
spacecraft. In the sequel, the ballistic coefficient B is de-
fined as CDS/m, respectively being CD the drag coefficient,
S the wet area, and m the spacecraft mass. The intrinsic dif-
ficulty in modelling precisely the relative drag effects derives
from the fact that the available models for atmospheric den-
sity have limited accuracy (and sometimes it is not possible to
implement the most accurate ones in the onboard computer),
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Fig. 2. Error in the relative motion modelling subject to non-homogeneous mass distribution.

the Bd of the deputy satellite is unknown for noncooperative
targets, and for the chief, even if S(t) may be computed de-
pending on the current attitude, still CD,c - function of the at-
titude - is not known. As a result, one has to estimate a certain
amount of additional parameters out of the observations feed-
ing the relative navigation filter. Hence, a trade-off between
the number of such additional parameters and the correspond-
ing achievable accuracy of the relative motion model has to be
performed, considering that in many practical scenarios one
has limited sources of observations or even weakly observ-
able problems (i.e., angles-only relative navigation). In the
literature, as for OE-based formulations only, the proposed
techniques either exploit a physical approach or an engineer
one. The first method directly expands the time derivatives of
the averaged OEs subject to a drag acceleration with an expo-
nential density model. Whereas the latter methodology relies
on a general empirical formulation of the differential drag ac-
celeration to include the perturbation effects produced on the
ROEs. Hereafter, both are considered to complete the relative

motion modelling framework developed so far.

4.1. The physical approach

This methodology has been employed by [20, 21], using the
set ξ = (a, e, i,Ω, ω,M)T of absolute orbital elements. Un-
der the hypothesis of considering only the tangential perturb-
ing acceleration, ignoring in B the factor related to the atmo-
spheric rotation, and assuming a spherical atmosphere with
exponential density model, the only averaged elements vary-
ing due to the effect of drag are a and e with an average rate
of [22, 16]:

˙̄a = −Bρpna
2(I0 + 2eI1 + 3e2

4 (I0 + I2))e−z

˙̄e = −Bρpna(I1 + e
2 (I0 + I2) + e2

8 (5I0 − I3))e−z
(14)

Here expressions are O(e3), ρp is the density evaluated at
the perigee, and Ii are the modified Bessel functions of the
first kind with argument z = ae/H , being H the scale height
factor of the density model. By defining a relative state



∆ξ̃ = (∆ξ,∆B)T, a first-order relative dynamics system can
be written as:

∆
˙̃
ξ = Aph ∆ξ̃ (15)

where the components of the plant matrix related to the dif-
ferential aerodynamic drag are the following:

Aph,11 = ∂ ˙̄a/∂a Aph,21 = ∂ ˙̄e/∂a
Aph,12 = ∂ ˙̄a/∂e Aph,22 = ∂ ˙̄e/∂e
Aph,17 = ∂ ˙̄a/∂B Aph,27 = ∂ ˙̄e/∂B

(16)

In order to merge this approach into the ROE-based formula-
tion, one should write a plant matrix Ãph for the (δα,∆B)T

relative state. In this case, however, using the chain of oper-
ations (5) together with the linearised change of variables (6)
introduces some errors, since the mean absolute elements that
vary over time are now no more depending from the constant
ones (recall Tables 1 and 2). Thus, following the steps of [22],
one should start from the Gaussian form of the Lagrange vari-
ation of parameters equations in non-singular elements, write
drag in the radial-tangential-normal frame, and average the
change of a, ex, and ey . Nevertheless, the following remarks
can already be done at this stage:

1. considering the inaccuracy of the exponential density
model and the joint effects of drag and J2, at least two
additional parameters are to be estimated: a correction
factor to ρp and the mean differential ballistic coeffi-
cient ∆B;

2. the solution of the linearised system requires always
numerical integration;

3. the functional expression of the the differential aero-
dynamic drag acceleration is not known explicitly,
but rather derived from the expansion of the aver-
aged Gauss equations subject to −(1/2)Bρ(ξ)v2(ξ).
Consequently, the introduction of further assump-
tions/simplifications, deriving from the specific relative
scenario, is not that handy.

4.2. The engineering approach

This methodology has been proposed in [17] and it is based
on the following considerations. First, the treatment of non-
conservative perturbations in the linearised equations of mo-
tion in the local Cartesian frame is generally more friendly
(this is especially true in the near-circular case where the
equations reduce to the linear time-invariant HCW ones).
Second, there is an equivalence between the linearised rel-
ative motion in the local Cartesian frame and the linearised
dynamics in the OE difference parametrisation [23, 24], and
thus also between (4) in ROEs. Third, the HCW equations
behave like a filter with two sharp pass-bands centred on the
frequencies 0 and the reciprocal of the orbital period P [25].
Thus in [17] the following general empirical formulation is

proposed to express the differential aerodynamic drag accel-
eration acting in the local tangential (T) direction:

a(T)
∆D = c1 + c2 sin

(
2π

P
t

)
+ c3 cos

(
2π

P
t

)
(17)

By mapping the solution of the HCW equations forced
by (17) in the ROE space, the following relationship between
the additional parameters ci and the ROEs is derived:

aδȧ = 2
nc1 aδėx = 1

nc2 aδėy = 1
nc3 (18)

Alternatively, here we show that the same result can be
achieved by using the change of variables introduced by [26]
to express the in-plane motion with respect to the average
position (x̄, ȳ) in the local radial (R), tangential (T) plane:

x = (x, ẋ, y, ẏ)T 7→ κ = (x̄, ȳ, γ, β)T

γ = x− x̄, x̄ = 4x+ 2ẏ/n
β = y − ȳ, ȳ = y − 2ẋ/n

(19)

As explained in [26], since

γ = − 1

2n
β̇ x̄ = − 2

3n
˙̄y (20)

the HCW equations in the new variables (ȳ, β) become two
decoupled second order differential equations, respectively a
double-integrator and an harmonic oscillator. Therefore, the
inclusion of the empirical acceleration of (17), is equivalent
to solve: {

¨̄y = −3a(T)
∆D

β̈ + n2β = 4a(T)
∆D

(21)

As ROEs are related to the integration constants of the
HCW [6], the following relationship between κ and the in-
plane ROEs δαip exists:

a(δa0, δλ0, δex0, δey0)T = (x̄0, ȳ0,−γ0,−β0/2)T

aδαip(t) = Mκ(t)

M =


1 0 0 0
0 1 0 0
0 0 − cos(nt) + sin(nt)/2
0 0 − sin(nt) − cos(nt)/2


(22)

Thus, the solution of (21), using (20) and (22) can be ex-
pressed in ROEs to obtain the equations (28)-(30) of [17],
leading to (18), in a more compact way.

The differential aerodynamic drag expressed in the local
RTN frame centred on the chief satellite is:

a(RTN,c)
∆D = RRTN,c

RTN,dR
RTN,d
TOD a(TOD)

D,d −RRTN,c
TOD a(TOD)

D,c

a(TOD)
D = − 1

2ρB ‖v − vatm‖ (v − vatm)
(23)

where the TOD frame is the inertial reference frame coherent
with section 2. In the relative sense, one can indeed neglect



the effect of the velocity of the atmosphere and of the differ-
ence in local frames. Moreover, the radial and normal compo-
nents are two order of magnitude smaller than the tangential
one. Thus, the empirical expression (17) is the trigonometric
approximation of:

a(T)
∆D = −(1/2)ρdBdv

2
d + (1/2)ρcBcv

2
c (24)

In addition, whenever the satellites are separated by few tens
of kilometres, this further simplification becomes realistic:

a(T)
∆D = −(1/2)ρcv

2
c (B̄d − B̄c(1 + b)) (25)

i.e., the satellites have almost same absolute velocity and ex-
perience almost same density. Note that in (25) the terms
varying over time are ρc, vc, and b, where the latter is the
zero-mean varying ballistic coefficient of the chief satellite
due to its attitude profile. Being the attitude a/o the geometry
of the deputy spacecraft generally not known, it is reasonable
to estimate its mean ballistic coefficient only. At this stage the
following remarks apply:

1. this formulation requires at most three additional pa-
rameters, which have the physical meaning of mean
secular variation of δa, δex, and δey due to differen-
tial drag. These coefficients are able to catch the com-
bined effects of all time varying quantities, comprised
density day/night variations and time-varying ballistic
coefficients;

2. if enough observations are available, δȧ, δėx, and δėy
can be estimated by fitting their mean trend to the
net of the changes caused by the geopotential, known
from (13);

3. if a good model of the differential aerodynamic drag
is known/available, the coefficients ci can be computed
through its fast Fourier transform (i.e., trigonometric
interpolation). In particular, when the employed den-
sity model is accurate enough, one can use the conve-
nient approximation of (25);

4. if only one additional parameter can be estimated by the
filter, than δȧ is to be chosen. It catches in a density-
model-free way the mean effect due to ρv2∆B̄. Thus,
this achieves the same result of the physical approach
requiring one additional parameter less. The remaining
error in the relative eccentricity vector is proportional
to the relevance of the neglected time-varying effects
(e.g., ρ(t) and b(t)).

In view of the aforementioned considerations, the frame-
work is completed using the engineering approach, to ob-
tained the following closed-form STM for the first-order rel-
ative dynamics subject to joint geopotential and differential

drag:

δα̂(t0 + dt) = Φ̂(αc0, dt) δα̂(t0)

Φ̂(αc0, dt) =

[
ΦJall Φ∆D
O3x6 I3x3

]
φd-drag 11 = dt

φd-drag 12 = 2
n sin(uf − u0)

φd-drag 13 = 2
n (1− cos(uf − u0))

φd-drag 21 = − 3
4ndt

2 + 1
2a0G2,adt

2

φd-drag 22 = − 3
n (1− cos(uf − u0))

φd-drag 23 = −3dt+ 3
n sin(uf − u0)

φd-drag 31 = 1
n sin(uf − u0)

φd-drag 32 = dt+ 1
n sin(uf − u0) cos(uf − u0)

φd-drag 33 = 1
n sin2(uf − u0)

φd-drag 41 = 1
n (1− cos(uf − u0))

φd-drag 42 = 1
n sin2(uf − u0)

φd-drag 32 = dt− 1
n sin(uf − u0) cos(uf − u0)

φd-drag 61 = 1
2a0G6,adt

2

(26)

Figure 3 shows an example of propagation accuracy
achievable when considering a 6 × 6 order-degree gravity
potential and the effect of differential drag. In the true dy-
namics, the Jacchia 71 model is used to compute the density
values, and the spacecraft are customised on the AVANTI
scenario [13]. The chief moves on the same orbit of the
example of Figure 2, whereas now the initial δa is zero:
the drift is created by the effect of differential drag only.
Propagation is carried out over one day: considering the do-
main of investigation, the practical difficulties in estimating
the drag effects, and the building up of relative drift, it is
reasonable to consider a greater frequency of orbit correc-
tion manoeuvres (i.e., shorter manoeuvre free propagation
legs). In Figure 3 the solution from the closed-form STM
of (26) is shown: black markers are obtained when only δȧ
is considered, whereas blue dots take into account also the
estimated values of (δėx, δėy). For this scenario, a very ac-
curate result is obtained, as the additional parameters could
be numerically fitted. Thus, this provides the potential best
accuracy this modelling can provide. Note that in this case
the effect of the sub-modelling of the relative eccentricity
vector behaviour is pretty small, since the true dynamics is
not including variation of the wet areas (related to the attitude
profile) a/o uncertainty in the drag coefficients. On the other
hand, the adopted formulation provides a practical tool to
get a quantitative insight of the effects on the relative orbit
produced by unknown factors.

5. CONCLUSION

This work presented a semi-analytical framework for the pre-
cise modelling of the relative motion in the low Earth orbit



0 2 4 6 8 10 12 14 16
−0.04

−0.02

0

0.02

0.04

0.06

Orbits

e δa
 (

m
)

c
1
 only, full state 

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

1

Orbits

e δλ
 (

m
)

c
1
 only, full state 

0 2 4 6 8 10 12 14 16
−0.5

0

0.5

1

1.5

2

Orbits

e δe
x (

m
)

c
1
 only, full state 

0 2 4 6 8 10 12 14 16
−0.2

0

0.2

0.4

0.6

Orbits

e δe
y (

m
)

c
1
 only, full state 

0 2 4 6 8 10 12 14 16
−0.1

0

0.1

0.2

0.3

Orbits

e δi
x (

m
)

c
1
 only, full state 

0 2 4 6 8 10 12 14 16
−0.2

−0.1

0

0.1

0.2

Orbits

e δi
y (

m
)

c
1
 only, full state 

Fig. 3. Error in the relative motion modelling subject to non-homogeneous mass distribution and differential drag perturbations.
The estimated additional parameters of (18) respectively amount to −5.981e− 4, −1.73e− 5, and −6.06e− 7 m/s.

environment, parametrised in relative orbital elements. The
paper described main functions, their interfaces, achievable
performances, and practical guidelines to employ it for rela-
tive guidance navigation and control applications.
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Demonstration of Autonomous Noncooperative Ren-
dezvous in Low Earth Orbit,” Journal of Guidance,
Control, and Dynamics, vol. 41, no. 6, pp. 1337–1354,
2018.

[14] Oliver Montenbruck and Eberhard Gill, Satellite Orbits
- Models, Methods, and Applications, Springer Verlag,
2001.

[15] Edwin Wnuk, “Recent Progress in Analytical Orbit The-
ories,” Advances in Space Research, vol. 23, no. 4, pp.
677–687, 1999, doi: 10.1016/S0273-1177(99)00148-9.

[16] L. Blitzer, Handbook of Orbital Perturbations, Univ. of
Arizona Press, Tucson, AZ, 1970.

[17] G. Gaias, J.-S. Ardaens, and O. Montenbruck, “Model
of J2 Perturbed Satellite Relative Motion with Time-
Varying Differential Drag,” Celestial Mechanics and
Dynamical Astronomy, vol. 123, no. 4, pp. 411–433,
2015, doi: 10.1007/s10569-015-9643-2.

[18] Adam W. Koenig, Tommaso Guffanti, and Simone
D’Amico, “New State Transition Matrices for Space-
craft Relative Motion in Perturbed Orbits,” Journal of
Guidance, Control, and Dynamics, vol. 40, no. 7, pp.
1749–1768, 2017, doi: 10.2514/1.G002409.

[19] P. Bodin, R. Noteborn, R. Larsson, T. Karlsson,
S. D’Amico, J.-S. Ardaens, M. Delpech, and J.-C.
Berges, “PRISMA Formation Flying Demonstrator:
Overview and Conclusions from the Nominal Mission,”
Breckenridge, Colorado, USA, 2012, 35th Annual AAS
Guidance and Control Conference, number 12-072.

[20] D. Mishne, “Formation Control of Satellites Subject to
Drag Variations and J2 Perturbations,” Journal of Guid-
ance, Control and Dynamics, vol. 27, no. 4, pp. 685–
692, 2004.

[21] O. Ben-Yaacov and P. Gurfil, “Long-Term Cluster
Flight of Multiple Satellites Using Differential Drag,”
Journal of Guidance, Control, and Dynamics, vol. 36,
no. 6, pp. 1731–1740, 2013, doi: 10.2514/1.61496.

[22] D. King-Hele, Theory of satellite orbits in an atmo-
sphere, London Butterworths, 1964.

[23] P. Sengupta and S. R. Vadali, “Relative Motion and
the Geometry of Formations in Keplerian Elliptic Orbits
with Arbitrary Eccentricity,” Journal of Guidance, Con-
trol, and Dynamics, vol. 30, no. 4, pp. 953–964, 2007,
doi: 10.2514/1.25941.

[24] Andrew J. Sinclair, Ryan E. Sherrill, and T. Alan Lovell,
“Calibration of Linearized Solutions for Satellite Rela-
tive Motion,” Journal of Guidance, Control, and Dy-
namics, vol. 37, no. 4, pp. 1362–1367, 2014, doi:
10.2514/1.G000037.

[25] Oscar L. Colombo, “The dynamics of global po-
sition system orbits and the determination of precise
ephemerides,” Journal of Geophysical Research, vol.
94, pp. 9167–9182, 1989.

[26] C. L. Leonard, W. M. Hollister, and E. V. Bergmann,
“Orbital Formationkeeping with Differential Drag,”
Journal of Guidance, Control, and Dynamics, vol. 12,
no. 1, pp. 108–113, 1989, doi: 10.2514/3.20374.


