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ABSTRACT

The work done on probability of collision between spherical
objects in orbit is extended here to the case of one spherical
object and one circular or rectangular object. The former is
a model for spacecraft or debris, while the latter is a model
for a sail or a tether. Two kinds of computations are done.
The first kind is the computation of the collision rate when
the flux of one object (typically debris) with respect to the
other object is known. This information is important when
planning a mission. The second kind is the computation of
the collision probability for a particular pair of objects whose
probability density functions of the positions are known. This
information is necessary to decide if an evasive maneuver is
going to be performed or not.

Index Terms— space debris; collision probability; colli-
sion rate; sail; tether;

1. INTRODUCTION

Estimating the rate or probability of collision between orbit-
ing objects is a fundamental task in space security awareness.
The rate is required, for instance, in order to assess the chance
of a satellite experiencing one or more collisions in its life-
time as it interacts with the surrounding debris environment.
The probability of collision needs to be computed whenever
an active spacecraft experiences a critical conjunction in or-
der to determine whether or not a propulsive collision avoid-
ance maneuver should be performed. Lastly, if a maneuver is
eventually required it can only be optimized with the aid of a
proper collision probability estimation method [1].

There is an abundant literature dealing with the compu-
tation of the collision probability when the two approaching
bodies are spheres [2, 3, 4, 5, 6, 7]. Of these, the meth-
ods [6, 7] are the most computationally efficient. Method [7]
is the only one that can be applied to the non-Gaussian case.

The spherical envelope of the true spacecraft geometry

provides a good conservative bound of the collision prob-
ability for the case of, say, two satellites. But it becomes
overly simplistic when at least one of the two objects is far
from spherical. Large circular or rectangular solar sails of
tens to hundreds of square meters surface and km-long teth-
ers, for instance, are envisioned as passive deorbiting devices
to be deployed at the end-of-life of future spacecraft to pro-
vide a low-cost reentry in low earth orbit (LEO). Actually the
European Space Agency is interested in the computation of
the rate and probability of collision that we mentioned in the
first paragraph. This is part of the study in which the authors
have been involved and which has motivated them to write the
present paper.

The need to compute collision probabilities and rates of
non spherical objects has been recognized before. An out-
line of how to decompose the International Space Station into
rectangular pieces to compute its probability of collision is
given in Chapter 6 of [4]. More recently a computation of
the collision probability for rectangular cross section was pre-
sented [8], but it used some approximations that we do with-
out in the present article.

There is a software [9] which can be used to compute the
rate of collision of orbiting ellipsoids, and an ellipsoid can
be a sphere and can be made to approach a tether. But this
approach works with pairs of satellites and requires a cata-
log, whereas our approach is analytical and we work with a
satellite and a flux obtained from a database (for example OR-
DEM [10] or MASTER [11]).

The attitude of a dead satellite is a complicated matter,
but taking its attitude to be random is a reasonable assump-
tion ([12], p. 13). Taking the maximum projected area on the
collision plane seems to be a conservative assumption, and
this has been done for cuboids [13, 14] and therefore for rect-
angles as a particular case. But if an upper bound of the actual
projection area is used, the deorbiting time is underestimated,
therefore it is not clear if taking the maximum projected area
is actually a safer option than taking the attitude to be random.



The goal of this article is to provide formulae for the colli-
sion rate and the collision probability of tethers and rectangu-
lar or circular sails (henceforth, body MM ) against satellites
or debris, modeled by spheres (henceforth, body SS). All of
the results are analytical except for the calculation of the col-
lision probability of a rectangle and a sphere, for which a very
efficient program has been written.

In section 2 the general theoretical setup of this article
is laid down. In section 3 we are interested in the rate of
collision of body MM with any satellite or debris over a
long interval of time. A typical use of this rate is to esti-
mate the survival probability of a certain mission. In subsec-
tion 3.1 the projection M of MM onto the encounter plane
stays the same over the long interval of time. In subsection 3.2
MM tumbles around randomly. In section 4 the probabil-
ity of collision of body MM against one particular body SS
is found. We suppose that the conditions of short-encounter
model [2, 15, 3, 5, 4, 16, 1, 6] are fulfilled and that the prob-
ability density functions (henceforth, pdf) of the positions of
both body MM and body SS are known. A typical use of
this probability of collision is to decide if an evasive maneu-
ver is going to be made or not. In section 5 some conclusions
are stated.

2. PROBABILITY OF COLLISION DURING A
SHORT ENCOUNTER
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Fig. 1. The collision region in the encounter plane is found by
sliding the projection of the debris or the satellite (the circle
S) around the projection M.

Whether we want to find collision rate or the collision
probability, the first step is to find the region of collision in the

encounter plane, which is the plane perpendicular to the rela-
tive velocity ~v of bodies MM and SS. Let M and S denote
the projections of bodies MM and SS onto the encounter
plane (also known as b-plane). Then, as shown in Fig. 1, the
collision region is the shaded region, which is obtained by
sliding S (the projection of the debris or the satellite) around
M . When the S comes back to its original position, the point
Q shown in Fig. 1 has drawn the contour of the shaded region.
We shall denote the shaded region byM⊕(−S), because it is
the Minkowski sum of the projections of M and the inversion
of S ([17], remark at the end of p. 12).

For a more complicated example of Minkowski sum of
two projections of spacecraft, see Fig. 11 of [18].

Let ρ be the pdf of the vector
−−→
PQ (see Fig. 1). Then the

probability of collision between MM and SS is∫
M⊕(−S)

d2r ρ(~r). (1)

In order to find the collision probability we need both the
dashed region Ms and ρ. But to find the rate the latter will
suffice.

We now show how to find the projection ρ of the pdf of
the relative position

−−→
PQ onto the encounter plane.

We assume that pdf’s of the positions P and Q, ρP and
ρQ, respectively, are given. That is, ρP (~r) d3r is the proba-
bility that the point P is in the interval [x, x + dx] × [y, y +
dy] × [z, z + dz], and a similar statement defines ρQ. Then,
since ρP and ρQ are independent, the probability density that
−−→
PQ be equal to ~r is the integral over all possible ways in
which the positions of P and Q differ by a vector ~r, that is,

ρrel(~r) =

∫
d3r′ ρP (~r′)ρQ(~r + ~r′) =

=

∫
d3r′ ρP (−~r + ~r′)ρQ(~r′).

(2)

Note that if ρP and ρQ are Gaussians, then ρrel is also a Gaus-
sian.

ρ is the projection of ρrel onto the encounter plane, that is
for any ~r in the encounter plane,

ρ(~r) =

∫
dλ ρrel(~r + λ~v), (3)

where ~v is the relative velocity. Note that ρ is a marginal
distribution.

3. RATE OF COLLISION OVER A LONG INTERVAL
OF TIME

In the present section we provide a general scheme to assess
the collision probability of a non-spherical body MM with a
population of spherical debris over an interval of time which
includes many orbital periods.



Strictly speaking, collisions are correlated random events.
For example, debris originated in an explosion appears in
clouds [19], so that if a collision with a piece of debris in
the cloud has taken place, then for a short period of time the
satellite is likely to still be in that cloud and has a larger than
usual probability of colliding again. Debris of astronomical
origin which is in solar orbit also comes in clouds. However,
collisions are very unlikely, and the mean time between col-
lisions is much larger than the time that the satellite spends
in a cloud. Therefore, over long intervals of time, collisions
are uncorrelated random events. Therefore their occurrence
is a Poisson process [20] whose rate we want to determine. It
follows from (1) that, on the average, the probability that the
result of flyby is a collision is

ρ̄ A(M ⊕ S), (4)

where A(M ⊕ S) is the area of the Minkowski sum and ρ̄ is
the average value of ρ. In a flyby ρ̄ is the inverse of the area of
the region of the encounter plane where the incoming debris
might be found. The rate of collision of the Poisson process
is ρ̄A(M ⊕ S) divided by the time ∆t between flybys. We
now determine this rate.

For each incoming sphere SS there is a different en-
counter plane which yields a different Minkowski sumM⊕S.
We are going to derive first the case in which all of the in-
coming spheres have the same size and direction. Let φ be
their flux in the MM system of reference. For example this
flux can be obtained from the ORDEM [10] or MASTER [11]
databases, where it is given in the system of reference of an
object MM whose orbital parameters are given by the user.
These spheres SS are normally incident on M ⊕ S. ρ̄ is a
surface density of spheres SS, because it has dimensions of
L−2 (inverse length squared). The number of spheres SS
incident on M ⊕ S during a time ∆t is, by definition of flux,
equal to φA(M ⊕ S)∆t. The surface density of spheres on
M ⊕ S is then φ∆t = ρ̄ and the Poisson rate wanted in
the last sentence of the last paragraph is φA(M ⊕ S). The
probability of n collisions during an interval t is

e−φA(M⊕S)t (φA(M ⊕ S))n

n!
. (5)

The most interesting case is n = 0, which yields the survival
probability, e−φA(M⊕S)t.

Note that eq. (5) is a generalization of formula (3.2)
in [21]. Indeed, formula (3.2) in [21] is formula (5) with
A(M ⊕ S)) substituted by A(M). When the size of the
debris is small compared to the size of MM , formula (3.2)
in [21] may be used. When SS is large debris or satellites,
their size must be included in the analysis and expression (5)
must be used.

So far we have obtained the collision rate for fixed size
and incoming direction of the spheres SS. For an arbitrary
distribution of sizes and incoming directions one has to weigh
by the distribution and integrate over the sizes of the spheres
and the directions of the flux.

3.1. Fixed attitude with respect to the encounter plane
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Fig. 2. Minkowski sum of a rectangle and a sphere.

Most of the time, collision is with small debris. Then the
rim in Fig. 1 is negligible and A(M ⊕ S) may be very well
approximated by A(M). However, tethers and sails may also
collide with active or dead spacecraft, whose sizes are not
negligible compared to the size of the sail or tether. Then the
area of the rim in Fig. 1 (that is, the region between M and
M⊕(−S)) has to be taken into account. When the projection
M is a parallelogram and the radius of the sphere is R, it is
clear from Fig. 2 that the area of M ⊕ S is the projected area
of the rectangle + (the projected perimeter of the rectangle ×
R) + πR2, that is

A(M ⊕ S) = A(M) + per(M)R+ πR2, (6)

where per(M) is the perimeter of M . This formula holds
whenever the projection M is convex. Indeed, the Steiner-
Minkowski theorem gives a formula for the computation of
the n-dimensional volume of Minkowski sums of convex bod-
ies and spheres. When n = 2 this formula is simply the above
formula ([22], p. 116).

In this section we are going to find the area A(M ⊕ S)
to be substituted in formula (5) for a rectangular sail, a tether
and a circular sail.

3.1.1. Rectangle

The projection of a rectangle onto a plane is a parallelogram.
Indeed, a projection is a linear transformation (see, e. g., [23],
p. 113). Therefore, it transforms parallel lines into parallel
lines.

Fig. 2 is useful to follow parts of this paragraph. Let
θa and θb be the angles made by the direction of the rela-
tive velocity and the directions of the sides of the rectangu-
lar sail (see Fig. 3). We define a Cartesian coordinate frame
whose z-axis is parallel to ~v. Then we define spherical coor-
dinates where θ is the colatitude (angle made with the posi-
tive direction of the z-axis) and ϕ is the longitude. The co-
ordinates of the unit vectors associated with the sides of the
sail are ~ua = (sin θa cosϕa, sin θa sinϕa, cos θa) and ~ub =
(sin θb cosϕb, sin θb sinϕb, cos θb). The cosine of the angle
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Fig. 3. Angles θa and θb are shown.

θM made by the z-axis and the vector perpendicular to the
sail is the third component of ~ua × ~ub, which is

cos θM = sin(ϕb − ϕa) sin θa sin θb. (7)

Since ~ua and ~ub are perpendicular, ~ua · ~ub = cos θa cos θb +
sin θa sin θb cos(ϕb − ϕa) = 0⇒

cos(ϕb − ϕa) = −cos θa cos θb
sin θa sin θb

. (8)

Therefore,

A(M) = ab cos θM =

= ab

√
1−

(
cos θa cos θb
sin θa sin θb

)2

sin θa sin θb =

= ab
√
− cos(θa + θb) cos(θa − θb)

(9)

and

A(M ⊕ (−S)) = ab
√
− cos(θa + θb) cos(θa − θb)+

2(a sin θa + b sin θb)R+ πR2.
(10)

This is the expression to be substituted in equation (5).
Of course M ⊕ (−S) in Fig. 2 could have been circum-

scribed by a larger parallelogram, but the formula for its area
is not simpler than the preceding exact formula.

3.1.2. Tether

We have seen that the projection of a rectangle is not a rectan-
gle but (in general) a parallelogram. Likewise, the projection
of a cylindrical or tape tether onto a plane is not a rectangle.

Fig. 4. Minkowski sum of a rectangle and a disk. Only the
two large contributions at the sides are kept in expression (11).

However, the difference between its projection and a rectan-
gle is very small. This is because the length to width ratio
of tethers is of the order of 105. Furthermore, a subsatellite
of non negligible size and mass is in most of the cases at-
tached to the tether end for various purposes. For instance in
a mechanical tether it can be a ballast mass to ease the tether
deployment, while in an electrodynamic tether the subsatellite
may host an electron emitting device (e.g. a hollow cathode)
to maximize the transmitted current. Therefore we may forget
about the non-rectangular part of the projection altogether.

We denote α to be the angle made by the tether and the
collision plane.

Case 1) Round tether of radius r and length L. Its pro-
jection on the collision plane is a rectangle of width 2r and
length L cosα. According to the formula (6), A(M ⊕ S) =
2rL cosα + 2R(2r + L cosα) + πR2. However, as ex-
plained at the beginning of this subsubsection, we neglect the
contributions of the ends of the tether, because that part of
the Minkowski sum is going to be taken into account by the
Minkowski sum of the satellite or the hollow cathode and the
sphere. Therefore we just keep the contribution (see Fig. 4)

2rL cosα+ 2RL cosα = 2(R+ r)L cosα. (11)

If the sphere is not small debris but a satellite, the above ex-
pression may be approximated by 2RL cosα.

Case 2) The tether is a tape of length L, width w (a typi-
cal value for w would be 2 cm) and negligible thickness. The
edges of the tape are not straight; the tape is twisted and its
projection on a plane has sinusoidal edges, as shown in Fig. 5.
While a computation of the Minkowski sum is in principle
possible, one may also substitute the actual projection by a
rectangle with the same axis of symmetry and width 2w/π,
which has the same area as the actual projection (see Fig. 5).
Indeed, let β be the angle made by some straight line and
some segment. We compute the average of the projection
of the segment over the straight line over the range [0, π/2],
which, by symmetry, is the same as the average over the range
[0, 2π]. The probability density function of the uniform den-



sity in the range [0, π/2] is the constant 1
π/2 . Therefore the

factor by which the length of the segment has to be multiplied
is
∫ π/2

0
dβ cos β

π/2 = 2
π . Thus if w is the width of the tape,

2w/π is its twisted width. With this approximation, the pro-
jection on the collision plane is a rectangle of width 2w/π
and length L cosα. According to formula (6), the area of the
Minkowski sum is ((2w/π)L cosα+2R((2w/π+L cosα))+
πR2. For the same reasons that lead to expression (11), we
just keep the contribution

2w

π
L cosα+ 2RL cosα = 2

(w
π

+R
)
L cosα. (12)

If the sphere is not small debris but a satellite, the above ex-
pression may be approximated by 2RL cosα.

Fig. 5. To the left, projection of a twisted tape on to a plane.
To the right, projection of a twisted tape on to a plane and a
rectangle of the same area.
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Fig. 6. Curve Γ to be projected onto the xy plane.

3.1.3. Disk

First we show that the projection of a disk of radius a onto a
plane pl is an ellipse. Let θM be the angle between pl and the
plane which contains the disk. Construct a Cartesian coordi-
nate frame whose x-axis is the intersection between the plane
which contains the disk and the plane pl, whose z-axis is per-
pendicular to the plane pl and whose y-axis is perpendicular
to the other two and completes a right-handed frame. Then
the projection of the diameter of the disk which is parallel to
the x-axis still has radius a, but all chords perpendicular to
the said diameter shrink by a factor cos θM when projected.
An ellipse of semiaxes a and b can be obtained from a disk of
radius a by a dilation, as is clear from the Cartesian formula
(x/a)2 + (y/b)2 = 1. Therefore the said projection is indeed
an ellipse of semiaxes a and a cos θM .

The perimeter of an ellipse of semiaxes a and b is
4aE

(
1 − b2

a2

)
, where E is the complete elliptic integral

of the second kind. It follows that

A(M ⊕ S) = πR2
sail cos θM + 4RsailE(sin2 θM )R+ πR2,

(13)
where Rsail is the radius of the disk. This is the expression to
be substituted in equation (5).

3.2. Random attitude

If we take the attitude of body MM to be random, then we
need to compute the average area of M ⊕S when the attitude
of body MM is averaged over. Fortunately, as we shall see,
there is a simple formula when MM is a flat, convex surface.

Lemma. Let ` be the length of a flat curve Γ (i. e.,∫
Γ
dr = `) contained in a plane whose normal makes an angle

θ with the z-axis. Then the average (with respect to rotations
of the curve Γ in its plane) of the length of the projection of
the curve Γ onto the xy-plane is

2

π
E(sin2 θ)`, (14)

where E is the complete elliptic integral of the second kind.
Proof. Let x′ and y′ be Cartesian coordinates for the plane

in which the curve Γ lies. We may, without loss of generality,
suppose that the axis x′ and the axis x are the same, so that
the normal to the plane containing the curve Γ is contained
in the yz-plane. Consider an oriented element of length d~r′

of the curve Γ which makes an angle ϕ′ with the x′-axis, that
is, d~r = |d~r|(cosϕ′, sinϕ′, 0). In x, y, z coordinates the unit
vector (cosϕ′, sinϕ′, 0) is 1 0 0

0 cos θ sin θ
0 − sin θ cos θ

 cosϕ′

sinϕ′

0

=

 cosϕ′

sinϕ′ cos θ
− sinϕ′ sin θ

.
(15)

The length of the projection of the unit vector on the xy-plane
is
√

cos2 ϕ′ + sin2 ϕ′ cos2 θ. The average of this expression



over the angle ϕ′ is

2

π

∫ π
2

0

dϕ′
√

cos2 ϕ′ + sin2 ϕ′ cos2 θ =
2

π
E(sin2 θ). (16)

Therefore the average projected length is

2

π

∫ π
2

0

dϕ′
∫

Γ

dr

√
cos2 ϕ′ + sin2 ϕ′ cos2 θ =∫

Γ

dr
2

π
E(sin2 θ) =

2

π
E(sin2 θ)`. QED.

(17)

P

Q

M
S

Fig. 7. It is seen in this example that M ⊕ S ⊂Menv ⊕ S, as
proven in the text.

Note that the above lemma is true regardless of whether
the curve Γ is open or closed, convex or concave. The formula
for the length of an ellipse, 4aE

(
1− b2

a2

)
, is a particular case

of the above formula, since an ellipse of semiaxes a and b
is the projection on the xy-plane of a circle which makes an
angle arccos(b/a) with the said plane.

The projected surface of a flat figure of area A contained
in a plane whose normal makes an angle θ with the z-axis is
A cos θ. The element of surface in spherical coordinates is
r2 sin θ dθ dr. Therefore, the probability that the colatitude
be θ is proportional to sin θ. Since

∫ π/2
0

dθ sin θ = 1, the
Steiner-Minkowski formula (6) yields that the average colli-
sion cross section when the orientation of a convex flat figure
is isotropic is∫ π/2

0

dθ sin θ
(
A cos θ +

2

π
E(sin2 θ)`R+ πR2

)
=

A

2
+
π`R

4
+ πR2.

(18)

Example 1. The figure is a rectangle of sides a and b. Its
average collision cross section is

A(M ⊕ S) =
ab

2
+
π(a+ b)R

2
+ πR2. (19)

Example 2. The figure is a disk of radius Rsail. Its aver-
age collision cross section is

A(M ⊕ S) =
πR2

sail

2
+
π2RsailR

2
+ πR2. (20)

For the reasons given in subsubsection 3.1.2, the case of
the tether (b << a) would be ab

2 + πaR
2 , with b the width

of the cylindrical tether, or b = 2/π times its width if it is a
tape. However, the attitude of the tether is not random, be-
cause of the large disparity between its moments of inertia
and the gravity gradient [24].

The convex envelope of a body is the smallest convex
body which contains it. When this body is a flat figure, the
convex envelope is the figure made by a rubber band which
surrounds the figure. It is intuitive that, as depicted in Fig. 7,
M ⊕ S ⊂ Menv ⊕ S. Indeed, M ⊂ Menv ⇒ Menv = M ∪
M ′,whereM ′ = Menv−M . The Minkowski sum is distribu-
tive with respect to the union of sets, therefore Menv ⊕ S =
(M ⊕ S) ∪ (M ′ ⊕ S) ⊃M ⊕ S.

We use this result to bound the average collision cross
section of a concave flat figure:

A(M ⊕ S) ≤ Aenv
2

+
π`envR

4
+ πR2, (21)

where Aenv and `env are the area and the perimeter of the
convex envelope, respectively.

4. PROBABILITY OF COLLISION FOR
RECTANGLES, TETHERS AND DISKS

We are going to suppose that ρrel is a Gaussian, because the
pdf’s of the position, in terms of which ρrel is defined, are
almost always given as Gaussians. Then the integral in (1)
cannot be done for arbitrary Ms. In particular, it cannot be
done for the Minkowski sum of a circle and an ellipse or the
Minkowski sum of a circle and a parallelogram. However, the
Minkowski sum of a circle and an ellipse, and the Minkowski
sum of a circle and a parallelogram can be tightly enclosed by
an ellipse and by a parallelogram, respectively. Good analyt-
ical approximations for the computation of the integral in (1)
are available when Ms is the ellipse or the parallelogram, as
we shall see.

4.1. The rectangle

An upper bound for the probability of collision is∫
Par(Ms)

ρ(~r), (22)



where Par(Ms) is the enclosing parallelogram shown in
Fig. 8 of the Minkowski sum shown in Fig. 2. If R is the
radius of the sphere, the sides of the enclosing parallelogram
are at a distance R from the projection of the rectangle. We
need to find the length added to each of the sides shown
in Figure 8. In the left figure the two kinds of kites whose
sides we need to find are shown in dashed lines. The angles
made by the sides of the kites which join at the vertex of
the parallelogram are ϕb − ϕa for the right upper kite and
π − (ϕb − ϕa) for the right lower kite. In the right figure, the
angle made by the two segments of lengthR is π−(ϕb−ϕa).
It is easy to see that the length of the dotted segment is
2R sin((π − (ϕb − ϕa))/2) = 2R cos((ϕb − ϕa)/2). The
larger triangle is an isosceles triangle whose angles have val-
ues (π − (ϕb − ϕa))/2 and ϕb − ϕa. It follows from the sine
theorem that x = 2R cos2((ϕb − ϕa)/2)/ sin(ϕb − ϕa) =

R tan π−(ϕb−ϕa)
2 . Likewise, for the right upper kite the

added length is x = 2R sin2((ϕb − ϕa)/2)/ sin(ϕb − ϕa) =
R tan ϕb−ϕa

2 . Then the length added to each of the sides is

R tan
π − (ϕb − ϕa)

2
+R tan

ϕb − ϕa
2

=

=
2R

sin(ϕb − ϕa)
=

R sin(θa + θb)√
− cos(θa + θb) cos(θa − θb)

,
(23)

where the last equality can be obtained from eqs. (8) and (9).

b sin b

a sin a

ab−

P

x

R

R

Fig. 8. In the top figure the two kinds of kites whose sides we
need to find are shown in dashed lines. In the bottom figure
one of them is amplified.

The enclosing parallelogram is now completely deter-

mined. The problem at hand is to evaluate the integral

1

2πσxσy

∫
Par(Ms)

d2r exp−1

2

(
x2

σ2
x

+
y2

σ2
y

)
, (24)

which is a tight upper bound for the collision probability. In
order to do this integral we shall develop a method for the
computation of bivariate normal probabilities in rectangular
domains based on the work of Genz [25].

In [25] Genz proposes and compares several algorithms
for the numerical computation of bivariate, trivariate normal
distribution and Student t probability distributions. In par-
ticular, a very fast algorithm is presented for computing the
bivariate normal probability L(h, k, ρ) for a domain of the
form [h,∞) × [k,∞) (h, k ∈ <) and a Gaussian of corre-
lation ρ ∈ [0, 1] and σx = σy = 1. Note that L is related
to the standard bivariate normal cumulative distribution Φ by
the expression Φ((x, y), ρ) = L(−x,−y, ρ).

To apply this algorithm, the domain and the covari-
ance matrix have to be transformed so that the former be-
comes a rectangle and the latter a correlation matrix. Let
V0 = (x0, y0) be a vertex of the parallelogram, and let
(x1, y1), (x2, y2) be the coordinates of the two vertices adja-
cent to V0. We define

~a = (ax, ay) ≡ (x1, y1)− (x0, y0),

~b = (bx, by) ≡ (x2, y2)− (x0, y0),
(25)

where ~a and ~b are the vectors representing the sides of the
parallelogram departing from V0. It is then possible to find a
linear transformation, defined by matrix M , that transforms
the parallelogram into a square of unit side by imposing:

M~a =

(
1
0

)
, M~b =

(
0
1

)
. (26)

Combining these two equations and solving for M yields:

M ≡
(
ax bx
ay by

)−1

(27)

Note that the resulting linear transformation will exist as long
the matrix formed by ~a and ~b is invertible, that is, if both
vectors are linearly independent. This condition will be met
by any non-degenerate parallelogram.

The new domain is a square of unit side, defined by vertex

V ∗0 =

(
x∗0
y∗0

)
≡MV0 , (28)

and side vectors ~a∗ = (a∗x, a
∗
y) ≡ (1, 0) and ~b∗ = (b∗x.b

∗
y) ≡

(0, 1). The covariance matrix will transform to:(
σ∗2x σ∗xy
σ∗xy σ∗2y

)
≡M

(
σ2
x 0

0 σ2
y

)
MT , (29)

which is in general not diagonal.



In the algorithm by Genz a correlation matrix instead of
a covariance matrix is used, so one final transformation is
needed. By applying two dilations (or contractions) of mag-
nitudes 1/σ∗x and 1/σ∗y along the x and y axes, respectively,
the covariance matrix becomes a correlation matrix:(

1 ρ′

ρ′ 1

)
≡
(

1 σ∗xy/σ
∗
xσ
∗
y

σ∗xy/σ
∗
xσ
∗
y 1

)
, (30)

and the domain becomes a rectangle of vertex

V ′0 =

(
x′0
y′0

)
≡
(
x∗0/σ

∗
x

y∗0/σ
∗
y

)
, (31)

and side vectors ~a′ = (a′x, a
′
y) ≡ (1/σ∗x, 0) and ~b′ =

(b′x, b
′
y) ≡ (0, 1/σ∗y).

Calling Rect the new domain, it is possible to write

1

2πσxσy

∫
Par(Ms)

d2r exp−1

2

(
x2

σ2
x

+
y2

σ2
y

)
=

1

2π
√

1− ρ′2

∫
Rect

d2r exp
−(x2 − 2ρ′xy − y2)

2(1− ρ′2)
=

Φ(Rect, ρ′),

(32)

where the latter can be computed numerically by combining
four calls to the bivariate normal probability function consid-
ered by Genz:

Φ(Rect, ρ′) = L(x′0, y
′
0, ρ
′)− L(x′0 + a′x, y

′
0, ρ
′)−

L(x′0, y
′
0 + b′y, ρ

′) + L(x′0 + a′x, y
′
0 + b′y, ρ

′).
(33)

We have programmed a web app implementing Φ(Rect, ρ′)
in JavaScript, which can be found at
http://sdg.aero.upm.es/index.php/online-
apps/gaussian-over-parallelogram.

4.2. The very thin rectangle (tether)

If the body MM is a tether then we can approximate its pro-
jection on the encounter plane by a rectangle, as argued in
subsubsection 3.1.2.

The probability caught by a rectangle of axes parallel to
the principal axes of a Gaussian is

∫ x2

x1

dx
e
− 1

2
x2

σ2x√
2πσ2

x

∫ y2

y1

dy
e
− 1

2
y2

σ2y√
2πσ2

y

=

1

2

(
erf
( x2√

2σx

)
− erf

( x1√
2σx

))
·

1

2

(
erf
( y2√

2σy

)
− erf

( y1√
2σy

))
.

(34)

If the Gaussian is isotropic, then all axes are principal and
expression (34) holds. When the Gaussian is not isotropic

X X

Y

Y1

1

2

2

Y

Y1

2

X

Fig. 9. The integral of a Gaussian over a rectangle of sides
parallel to the principal axes of the Gaussian factorizes, yield-
ing the result (34).

(say σy < σx) we may dilate the y direction by a factor σx/σy
to make it isotropic, as shown in Fig. 10 (this transformation
is also used in [8]). A dilation, like a projection, is a lin-
ear transformation. Therefore, it transforms parallel lines into
parallel lines. If the eigenaxes of the dilation are not paral-
lel to the sides of the rectangle, the rectangle is transformed
not into another rectangle but into a parallelogram. However,
if the rectangle is very elongated we can again argue as in
subsubsection 3.1.2 and suppose that it will transform into
almost another rectangle. In particular, we suppose that the
dilation of the rectangle can be well approximated by a rect-
angle whose long axis is the dilated axis and whose width
is the dilated width. Since the new Gaussian is isotropic, its
axes may be rotated arbitrarily and still be principal axes. We
rotate them so as to render them parallel to the sides of the
dilated rectangle, as shown in Fig. 10, and then formula (34)
can be applied.

In order to adapt the result (34) to the approximation that
we have described, we rewrite it as follows:

1

2

(
erf
(x′ + ∆′/2√

2σx

)
− erf

(x′ −∆′/2√
2σx

))
·

1

2

(
erf
( y′2√

2σy

)
− erf

( y′1√
2σy

))
,

(35)

where (x′, y′1) and (x′, y′2) are the coordinates of the end
points of the dilated longitudinal axis of the tether in the new
coordinates and ∆′ is the width of the dilated rectangle.

Substitution of these four quantities into formula (35)



X

Y

make isotropic

X’

Y’

Fig. 10. The transformation shown allows the use of the sim-
ple formula (34) for the computation of the Gaussian proba-
bility above any thin rectangle.

yields:

1

2

erf
( 1√

2

1

σxσy

σ2
yx2(x2 − x1) + σ2

xy2(y2 − y1)√
σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2

)
−

erf
( 1√

2

1

σxσy

σ2
yx1(x2 − x1) + σ2

xy1(y2 − y1)√
σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2

) ·

1

2

erf

( √
(x2 − x1)2 + (y2 − y1)2

√
2
√
σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2(
x2y1 − x1y2√

(x2 − x1)2 + (y2 − y1)2
+

∆

2

))
−

erf

( √
(x2 − x1)2 + (y2 − y1)2

√
2
√
σ2
y(x2 − x1)2 + σ2

x(y2 − y1)2(
x2y1 − x1y2√

(x2 − x1)2 + (y2 − y1)2
− ∆

2

)))
.

(36)

The coordinates of the ends of the tether are good coor-
dinates to derive the two preceding formulae, but are not as
practical as the following five geometrical parameters: the b-
plane coordinates (x and y) of the geometrical center of the
rectangle, the rectangle length L and width ∆ projected on
the b-plane, and the orientation angle, Λ, of the longest rect-
angle axis with respect to the x eigenaxis of the covariance
ellipsoid. In this way the coordinates of the four vertices of
the rectangle in eq. (36) can be written as:

x1,2 = x± L

2
cos Λ; y1,2 = y ± L

2
sin Λ, (37)

leading to:

1

4

{
erf

[
D2L/2 + xσ2

y cos Λ + yσ2
x sin Λ

√
2Dσxσy

]
+

erf

[
D2L/2− xσ2

y cos Λ− yσ2
x sin Λ

√
2Dσxσy

]}
{

erf

[
D/2 + |y cos Λ− x sin Λ|√

2D

]
+

erf

[
D/2− |y cos Λ− x sin Λ|√

2D

]}
,

(38)

where:
D ≡

√
σ2
x sin2 Λ + σ2

y cos2 Λ. (39)

4.3. The disk

The projection of a circle of radius r which makes an angle α
with the encounter plane is an ellipse of semiaxes r cosα and
r. The Minkowski sum of this ellipse with a circle of radius
R is not another ellipse, but it is enclosed by an ellipse of
semiaxes r cosα + R and r r cosα+R

r cosα = r cosα+R
cosα , as shown

in Fig. 11.

Fig. 11. The Minkowski sum of an ellipse and a circle is
enclosed by the ellipse shown.

In order to find the probability enclosed by this ellipse
we dilate along the direction of the shorter axis by a factor
1/ cosα, so that the ellipse becomes a circle. If the direction
of the shorter axis is ~w, then the sigmas of the Gaussian have
to be multiplied by the factors (~w ·~i)/ cosα and (~w ·~j)/ cosα,
respectively. We are then in a position to apply any of a num-
ber of algorithms devised in the last decades in the field of
spatial debris to compute the Gaussian probability caught by
a circle [2, 3, 4, 5, 6, 7].

5. CONCLUSIONS

The formulae given in this article make it possible to improve
the enveloping sphere or same area circle approximations for
the computations of collision rates or probabilities when one
of the objects is a circle, a rectangle or a very long rectangle
or cylinder. This improvement is done without any additional



computational cost, since the formulae are all analytical ex-
cept for the case of the collision probability of a rectangle, for
which a very fast algorithm, available as an app, is provided.

The most direct application is to sails and tethers, which
motivated this work, but other applications are possible. In
general one may decompose a complex aircraft in various
pieces, and separately compute the probability of collision for
each. When one of the pieces is a solar panel then the formu-
lae for the rectangle can be used. Of course this leaves the
problem of mutual shadowing, but this would be a topic for
future work.
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