

ESA Earth Observation on board data processing future needs and technologies

# Massimiliano Pastena EOP- $\Phi$ MT

25 Feb 2019- Future Needs and Requirement on On-Board Data Processing

ESA UNCLASSIFIED - For Official Use

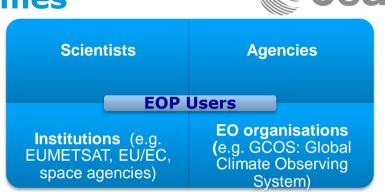
#### 

# Content



Overview of actual and planned ESA Earth observation missions

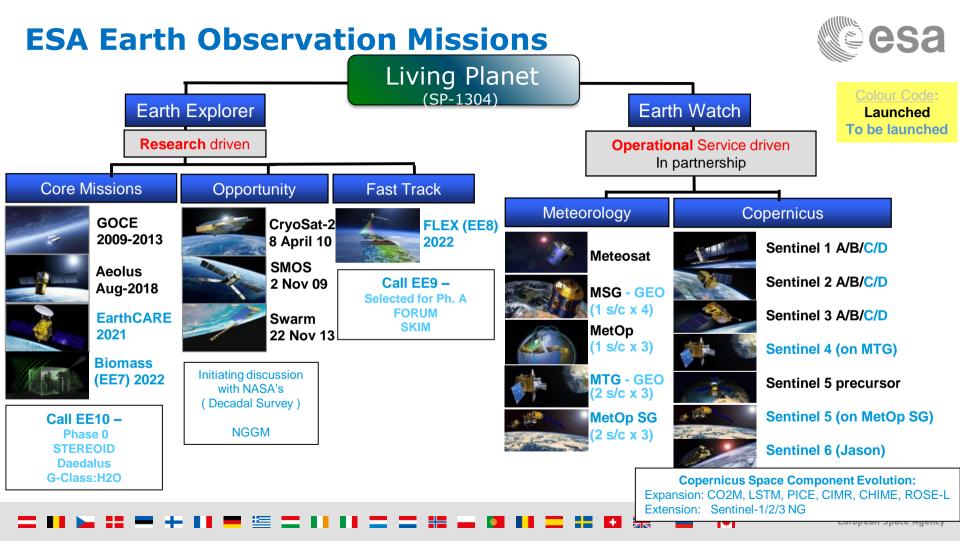
- Meteorological & EUMETSAT
- Copernicus actual sentinels, extension and expansion
- Earth Explorers


#### Future

- future needs and technologies to support Earth Observation Program
- IOD from EOP

•

# **ESA Earth Observation Programmes**


ESA EO is user-driven



\*

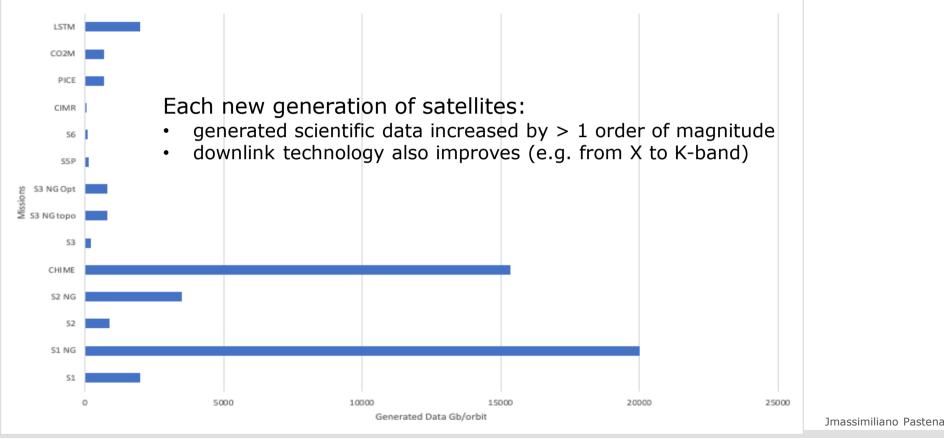
EOP include end-to-end activities, i.e. from conception to exploitation (and different types) of space missions:

- EARTH SCIENCE MISSIONS → Earth Explorers (Core, Opportunity)
- EARTH APPLICATIONS MISSIONS → Earth Watch, i.e. (pre-)operational missions in <u>partnership</u> (EUMETSAT, EU / EC, Member States, ...



#### **Copernicus** Program Evolution

| EO<br>Capability                          | Actual Extended<br>Data<br>Sentinels Availability                                                                       | Sentinels Second<br>Expansion Generation                    | Instrument                                                                                                                           | Orbit                                                |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
| Earth<br>Microwave<br>(3D) Imaging        | Sentinel-1A Sentinel-1C<br>Sentinel-1B Sentinel-1D                                                                      | ROSEL<br>Sentinel-1 SG                                      | C Band SAR<br>L Band SAR + Rad<br>HRLS SAR                                                                                           | LEO<br>LEO                                           |
| Earth<br>Optical<br>Imaging               | Sentinel-2 A Sentinel-2 C<br>Sentinel-2 B Sentinel-2 D                                                                  | CIMR<br>LSTM<br>CHIME<br>Sentinel-2 SG<br>Sentinel-3 SG OPT | Passive Microvawe Image<br>Multispectral<br>TIRI<br>Hypespectral<br>MSI+TIRI SG<br>Hyper-spectral SG<br>OLCI+SLSTR SG<br>OPT         | LEO<br>LEO<br>LEO<br>LEO<br>LEO<br>LEO<br>LEO<br>GEO |
| Earth<br>Topography<br>by Altimetry       | Sentinel-3 A<br>Sentinel-3 B<br>Sentinel-6 A<br>Sentinel-6 B<br>Sentinel-6 D                                            | Sentinel-3 SG TOP                                           | C/Ku Radar Altimeter<br>VIS-SWIR-TIR radiometer<br>C/Ku Altimeter<br>GNSS Radio-Occultation<br>Altimeter ICE/SNOW                    | LEO<br>LEO<br>LEO                                    |
| Earth<br>Atmosphere<br>by<br>Spectroscopy | Sentinel-4A Sentinel-4C<br>Sentinel-4B Sentinel-4D<br>Sentinel-5A Sentinel-5C<br>Sentinel-5B Sentinel-5D<br>Sentinel-5P | 02M                                                         | UVN Spectrometer GEO<br>Infrared Sounder GEO<br>UVN Spectrometer LEO<br>Infrared Sounder LEO<br>Spectrometer LEO<br>CO2 Spectrometer | LEO<br>GEO<br>GEO<br>LEO<br>LEO<br>LEO               |


#### The set of th

<u>esa</u>

### Scientific data generated







= II 🛌 == + II = 😑 = II II = = = 🔚 🛶 🚺 II = = II 💥 🙌

# On board data processing- why?

Reduce Downlink data rate

 $\rightarrow$ 

Maintain the produced Scientific data volume

HW-SW O/B for processing

Compression: less bits / pixel.

Increase scientific content of downlink data

AI: Send less pixels (those with sci- content)

OB processing Hw-SW:

- development cost

- Mass, power and volume increase must be better than the data rate reduction benefit



#### Image: Image

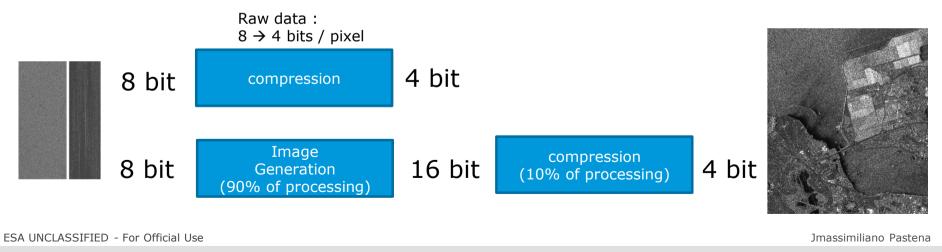






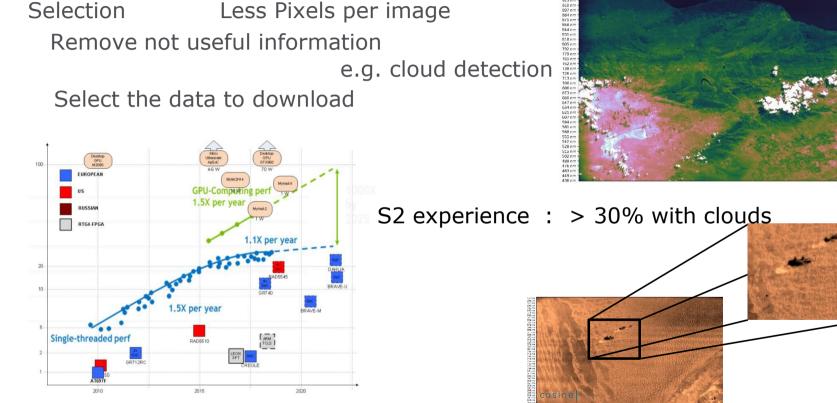
Jmassimiliano Pastena

# Data downlink rate Reduction




Compression Less Bit per Pixel

Lossy Compression


#### Lossless Compression

Increase of dynamics Harder to compress  $16 \rightarrow 4$  bits / pixel (SAR is hard due to speckle – pixels are decorrelated)

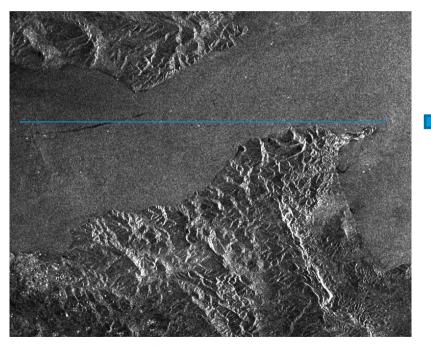


#### = II 🛌 == + II = 😑 = II II = = = 🔚 🛶 🚺 II = = II 💥 IV

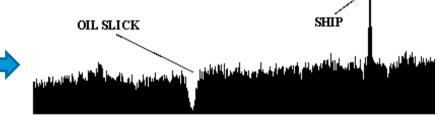
# Increase the scientific content of downloaded data



Jmassimiliano Pastena


#### 




# **Feature Selection**



#### Classic Algorithm

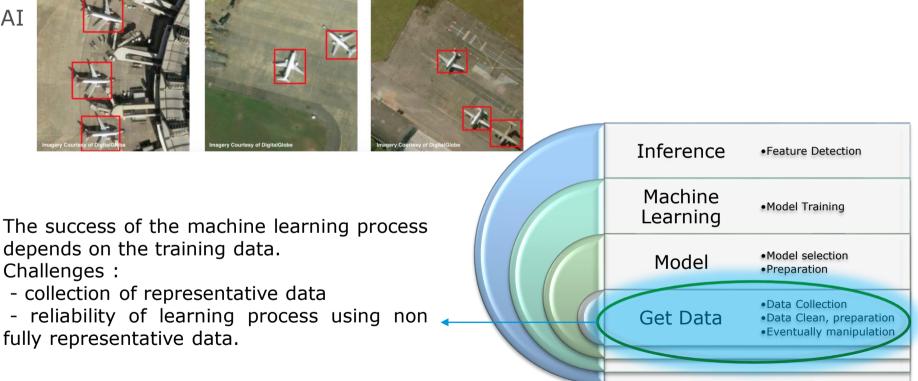


Efficiency and reliability of the feature selection with classic algorithm strongly depends on the application



High computational power needed

ESA UNCLASSIFIED - For Official Use


Jmassimiliano Pastena

#### 

#### **Feature Selection**



AI



ESA UNCLASSIFIED - For Official Use

#### +

Jmassimiliano Pastena **European Space Agency** 

# Phi-Sat



**European Space Agency** 

- PhiSAT : 1<sup>st</sup> EOP innovation mission based on CubeSats from the Sentinel Small Sat (S3) challenge
- KO March 2017, launch On SSMS POC Flight Aug 2018.
- Main applications are:
  - •ICE mapping and thickness measure through GNSS reflectometry (L band)

•Soil Moisture (L band radiometer) in combination with hypespectral (VNIR-TIR) measure for pixel decomposition •Agriculture and water management with VNIR-TIR

+

First IOD of Artificial intelligence for Cloud detection Using Myriad 2 Movidius Board, Challenge: representative image (before the launch) for the learning process Movidius board **GPSAntenna** XP/ZM Startracker Apertures Vehicle Back Vehicle BackPlane XP/Z Startracker Apertures **GPS**Antenna UHF Dipole Antenna Mechanism OISL P/L 3 5 Coarse Sun Sensor UHF Dipole Antenna Mechanism 6 OISL P/L (6) Coarse Sun Sensor  $\mathbf{\hat{)}}$ S-Band Patch Antenna © cosine 2018 FMPL-2 Zenith GPS Antenna HyperScout Telescope Baffle UHF Dipole Antenna Mechanism HyperScout-2 ESA UNCLASSIFIED - For Official Use Jmassimiliano Pastena

# Conclusion



- The trend : increase of > 1 order of magnitude the generated data for a given instrument;
- Two prospective for the OB processing technology needs (assuming a given downlink data rate):
  - 1. Reduce the Data to download (same scientific data, but with less bits/pixel);
  - 2. Select the data to increase the scientific content to downlink (relevant pixels or information)

- Enablers:
  - availability of improved HW performance (GPU, VPU etc.) using COTS
  - new algorithms based on AI improving the scientific content to downlink.

**European Space Agency** 

+