

Common DPU and Basic Software for JUICE Instruments

Felice Torelli JUICE Software and Data Handling OBDP2019

ESA UNCLASSIFIED - For Official Use

European Space Agency

٠

- Introduction
- Common DPU & BSW activity
- The common DPU
- The common Basic Software
- Lessons learned and conclusions

Introduction

Science Objectives

- Exploration of the Jupiter system
 - Jovian atmosphere
 - Jovian magnetosphere
 - Jovian satellite and ring systems
- Exploration of habitable worlds
 - Ganymede as a planetary object and possible habitat
 - Europa's recently active zones
 - Callisto as a remnant of the early Jovian system

Instrument suite

JANUS: moons geology, cloud morphology and dynamics
MAJIS: chemistry, atmospheric and surface composition
UVS: atmosphere of moons and aurora of Jupiter
SWI: Jupiter wind, moons atmospheric temperature and composition

GALA: moons shape and topographyRIME: moons surface study3GM: gravity field and moon interiors

J-MAG: magnetic field **PEP**: plasma environment and study of neutral and ion composition of exospheres **RPWI**: plasma environment

Spacecraft and mission characteristics

Spacecraft

- Mass
 - Dry ≈ 2200 kg
 - Propellant ≈ 2900 kg
 - Total > 5000 kg
 - Instruments = 260 kg
- Power
 - Solar Array \approx 725 W EOL
 - Instruments GCO500 = 180 W
 - Instruments fly-by = 230 W (360 W for $\frac{1}{2}$ h)
- Memory = 1 Tbit EOL
- Δv ≈ 2400 m/s
- Downlink data rate: 1.4 Gb/24 h

Mission

Launch date May 2022

ESA UNCLASSIFIED - For Official Use

- 5 gravity assists (Earth, Venus, Earth, Mars, Earth)
- Cruise phase \approx 7.5 years
- Science phase \approx 3.5 years

Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 5

esa

Common DPU & BSW activity

- **10 Instruments** developed by different institutes (PIs) at Instrument Consolidation Review (ICR)
 - → 10 different designs for the Digital Processing Unit (DPU).

Similar scenario observed also in **Bepi-Colombo** and **Solar Orbiter** where a similar suite of instruments is present, In particular:

- Only partial reuse of **Boot SW** or other SW libraries from previous missions
- very different level of quality of SW data packages between instruments
- In some cases, **RTEMS OS included in Boot SW** (mission critical, category B)!
- Delays and cost overruns also due to DPU and SW development/validation

JUICE instr. status at ICR

Instr	СРИ	MIPS	Memory	SpW
GALA	UT699	20	- 512 kB EEPROM - 128 MB SDRAM	100
JANUS	GR712RC	<80	- 32 MB Flash - 256 MB SDRAM	-
JMAG	LEON3FT- RTAX	20	- EEPROM - SRAM	10
MAJIS	AT7913E	<45	- EEPROM - SRAM	10 Rx, 100 Tx
PEP	OR1200	20	- 8 MB Flash - 16 MB SRAM	10
RIME	LEON3 RTAX4000	~20	- EEPROM - SRAM	10
RPWI	UT699	<60	- 2 MB MRAM - 32 MB SRAM	-
SWI	Custom RTAX	~20	- 512 kB SRAM	-
UVS	8051	<5	- 128 kB EEPROM - 128 kB SRAM	10 Rx, 40 Tx

+

Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 8

ESA UNCLASSIFIED - For Official Use

▶ # = + !! = ≝ = !! !! = = # ₩ ₩

European Space Agency

- Interface to the OBC/SSMM (i.e. SpW)
- Redundancy scheme (i.e. 2 cold redundant DPUs, 2 SpW links)
- Processor (i.e. LEON 2 or 3) and memories
- EEE parts
- Basic SW libraries (i.e. Boot SW, RTOS, Driver SW, PUS library)
- SW Validation Facility

Flexibility & configurability

- CPU performance and memory size
- Form factor and mechanical interface
- Instrument-specific functions and interfaces

Constrains

- Power consumption
- Radiation tolerance
- Generic vs. specific

ESA UNCLASSIFIED - For Official Use Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 9

How the problem was addressed in JUICE

- **EXPRO** contract (*ref. 4000113396/15/NL/BW*) Common development of:
 - → DPU processor section design (CPU, SpW, memories): schematics, EEE parts list, analyses, verification tests, HW prototype
 - → Basic SW (Boot, Standby & Drivers): source code, unit/integration/validation tests, ECSS documentation
- PI <u>still</u> responsible for:
 - → procurement of EEE parts
 - → instrument-specific DPU functions
 - \rightarrow instrument DPU manufacturing and test
 - → Boot & Standby SW validation in context

ESA UNCLASSIFIED - For Official Use

Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 10

*

European Space Agency

Document Id	Title
BOOT-SW-RS	DPU Boot SW Requirements Specification
BOOT-SW-ADD	DPU Boot SW Architectural Design Document
BOOT-SW-ICD	DPU Boot SW Interface Control Document
BOOT-UT-PLAN	DPU Boot SW Unit Test Plan
BOOT-VT-PLAN	DPU Boot SW Validation Test Plan and Specification
BOOT-SW-VCD	DPU Boot SW Verification Control Document
BOOT-SW-BUD	DPU Boot SW Budget Document
HDSW-SW-RS	DPU HW Driver SW Requirements Specification
HDSW-SW-ADD	DPU HW Driver SW Architectural Design Document
HDSW-SW-ICD	DPU HW Driver SW Interface Control Document
HDSW-UT-PLAN	DPU HW Driver SW Unit Test Plan
HDSW-VT-PLAN	DPU HW Driver SW Validation Test Plan and Specification
HDSW-SW-VCD	DPU HW Driver SW Verification Control Document
HDSW-SW-BUD DPU HW Driver SW Budget Document	
PSEC-HW-RS	DPU Processor Section Requirements Specification
PSEC-HW-ADD	DPU Processor Section Architectural Design Document
PSEC-HW-ICD	DPU Processor Section HW/SW Interface Control Document
PSEC-HW-LIST	DPU Processor Section EEE Parts List
PSEC-VV-PLAN	DPU Processor Section Verification Test Plan
PSEC-HW-VCD	DPU Processor Section Verification Control Document
PSEC-HW-PSA	DPU Processor Section Parts Stress Analysis
PSEC-HW-RAD	DPU Processor Section Radiation Analysis
PSEC-HW-WCA	DPU Processor Section Worst Case Analysis
PSEC-HW-FMECA	DPU Processor Section FMECA

ESA UNCLASSIFIED - For Official Use

Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 11

_ II 🛌 :: 🖛 + II 🗯 🚝 _ II II _ _ _ II 🖬 📥 🔯 II _ II 📰 🕷 👾

European Space Agency

Deliverables 2/2

Document Id	Title			
BOOT-SW-DD	DPU Boot SW Design Document	DPU Boot SW Design Document		
BOOT-UT-REP	DPU Boot SW Unit Test Report			
BOOT-SW-CF	DPU Boot SW Configuration File			
BOOT-SW-UM	DPU Boot SW User's Manual			
BOOT-VT-REP	DPU Boot SW Validation Test Report			
HDSW-SW-DD	DPU HW Driver SW Design Document			
HDSW-UT-REP	DPU HW Driver SW Unit Test Report	DPU HW Driver SW Unit Test Report		
HDSW-SW-CF	DPU HW Driver SW Configuration File	DPU HW Driver SW Configuration File		
HDSW-SW-UM	DPU HW Driver SW User's Manual			
HDSW-VT-REP	DPU HW Driver SW Validation Test Report			
PSEC-HW-DD DPU Processor Section Design Document				
PSEC-HW-SCH	PSEC-HW-SCH DPU Processor Section Schematics			
PSEC-HW-CF	DPU Processor Section Configuration File	Item identifi		
PSEC-HW-UM	DPU Processor Section User's Manual			
PSEC-VV-REP	DPU Processor Section Verification Test Report BOOT-SRC-S			
DPU-FP	Final Presentation/Final Report	BOOT UT OM		

• JUI-ISVV-DPU-RDVR - DPU Req. and Design Verification Report

JUI-ISVV-DPU-V300VR – DPU Boot Software V3.0.0 Verification

JUI-ISVV-DPU-CVR - DPU Code Verification Report
 JUI-ISVV-DPU-TVR - DPU Test Evaluation Report

ESA complementary documents:

- JUI-EST-SYS-MX-001 BOOTSW-SGICD compliance
- JUI-EST-SYS-RP-027 AUTOMATIC ASW START
- JUI-EST-SYS-RP-030 PUS6 ADDRESSING
- JUI-EST-SYS-RP-031 ACK FLAGS
- JUI-EST-SYS-RP-033 ANOMALY IN SpW TDP
- JUI-EST-SYS-RP-034 PUS 6 MEMORY ID 2
- BOOT-SW-RFD-001, 002, 003

Item identifier	Description
BOOT-SRC-SW	DPU Boot SW Source Code (including make/link files and any other files needed to build the SW) and Executable
BOOT-UT-SW	DPU Boot SW Unit Test Scripts/SW Source Code
HDSW-SRC-SW	DPU HW Driver SW Source Code (including make/link files and any other files needed to build the SW) and Binary Library
HDSW-UT-SW	DPU HW Driver SW Unit Test Scripts/SW Source Code
BOOT-VT-SW	DPU Boot SW Validation Test Scripts/SW Source Code
HDSW-VT-SW	DPU HW Driver SW Validation Test Scripts/SW Source Code
PSEC-HW-HW	DPU Processor Section Prototype Hardware

Report ESA UNCLASSIFIED - For Official Use

ISVV reports:

Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 12

= •• •• •• ••	■ 🖺 〓 〓 💵 〓	= # _ 0 11 =	+ 👫 🖿	I ♦I	European Space Agency
---------------	-------------	--------------	-------	-------------	-----------------------

The common DPU

 ESA UNCLASSIFIED - For Official Use
 Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 13

 Image: State of the state

ESA UNCLASSIFIED - For Official Use

DPU – [Prototype] block diagram

CPU

- GR712RC dual LEON3FT
- Clock freq. 20..100MHz

Memory

- PROM: 32KiB
- MRAM: 2 or 8 MiB
- SRAM: 4, 8, 16 or 32 MiB
- SDRAM: 256 MiB

SpaceWire

- Redundancy: 1 or 2 links
- Link speed: 40 or 100Mbps

Instrument specific companion FPGA/ASIC

- Memory mapped I/O
- SpW RMAP

Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 14

💶 📲 🛌 🚦 🚍 🕂 💵 🚍 🔚 📲 🗮 🚍 📲 🚛 🚳 📲 🚍 👫 🛀 🙌 European Space Agency

Dual LEON3-FT (CPU)

- GR712RC
- Total dose: 300 kRad (Si)/106 MeV/cm2/mg
- 240-pin CQFP package

SRAM (working memory)

- UT8R4M39,UT8R2M39,UT8R1M39
- 100 krad(Si), SEL Immune: <110 MeV-cm2/mg, SEU error rate = 7.3x10-7 errors/bit-day
- 32-bit data, 7-bit BCH EDAC

SDRAM (working memory)

- UT8SDMQ64M48 3.0-Gigabit SDRAM
- 100 krad(Si), SEL Immune 111 MeV-cm2/mg, SEU Event Rate: 1.3E-10 events/bit-day
- 64Mx48-bit, allows 16-bit Reed-Solomon EDAC
- Single configuration: 256MiB effective size

esa

PROM (Boot memory)

- UT28F256LVQLE 32KiB PROM
- Total dose: 1Mrad (Si), Onset LET: 40 MeV-cm2/mg, SEL Immune > 110 MeV-cm2/m

MRAM (Application Storage Memory)

- UT8MR2M8, UT8MR8M8
- Total dose: 1Mrad (Si), SEL Immune: 112 MeV-cm2/mg @125C
 SEU Immune: Memory Cell 112 MeV-cm2/mg @25C

SpW interface (TM/TC interface)

- Aeroflex UT54LVDS031LV/32LV
- Total-dose: 300 krad(Si) and 1Mrad(Si)
 Latchup immune (LET > 100 MeV-cm2/mg)
- Redundant SpW transceivers for SpW0/1

SRAM 4 MiB

- Max clock freq. 100MHz
- Max clock freq. without ws 40MHz
- 50MHz clock freq. with 1 ws

SRAM 32 MiB

- Max clock freq. 72MHz
- Max clock freq. without ws 29MHz
- 50MHz clock freq. with 2 ws

SDRAM 256 MiB

• Max clock freq. 44MHz

Data obtained from Hyperlinx simulations on prototype PCB \rightarrow worst case, **conservative**

ESA UNCLASSIFIED - For Official Use		Felice	Torelli	OBDP 2019	- ESTEC 25/02/2019 Slide 16
	. =	+	-	I •I	European Space Agency

The common Basic Software

 ESA UNCLASSIFIED - For Official Use
 Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 17

 Image: State of the state

Boot & Standby Software

- SUN SPARC and Linux kernel coding style conventions
- GNU Make automatic build
- Statically allocated RAM
- No OS or externally developed SW
- Drivers SW common to the HW Drivers SW library
- Minimal CPU resource utilisation [no FPU, interrupts, IU mul/div]
- GR712RC internal device addresses hardcoded
- Unused GR712RC resources are disabled [clock gated]
- Instrument-specific parameters
 configurable at compile-time

Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 18

- → Operating System Abstraction Layer (OSAL)
- → Low level and callback functions
- → Interfaces supported:
 - → SPI
 - → UARTs
 - → SpaceWire
 - → Timers
 - → AHB status
 - → Watchdog
 - → Clock gating
 - → Memory controller

→ RTEMS 4.10 used for the HW drivers SW validation

ESA UNCLASSIFIED - For Official Use	Felice Torelli	OBDP 2019 - ESTEC	25/02/2019 Slide 19
	+ 💥 🛏	I+I	European Space Agency

SW Unit Tests

- GRMON2 and TSIM2
- Instruction code decision coverage on object files from TSIM2
- Unit test each component separately
- Fully automated test suite
- Code coverage also available with GRMON2
- → 98% code coverage on unit-tested code
- → 15-20% of the code tested by validation instead

SW Validation Tests

- GRMON2 and GRESB
- TCL scripting and GRMON2 scripting
- Unit test each component separately
- Fully automated test suite
- Test suite also ported to S/C Interface Simulator (SIS)
- \rightarrow Black box tests checking TM
- → White box tests checking internal registers or traces with GRMON2

Lessons learned and conclusions

n, efficient and effective support to the instruments thanks to the common		YES	YES
and SW	JMAG	YES	YES
m OBC-instrument TM /TC interface for basic PUS services	MAJIS	YES	YES
In Obe-institutient IM/ Te interface for basic FOS services	PEP-Lo	NO	YES
rces in the PI teams focused on SW science and performance requirements	PEP-Hi	NO	NO
ments EM deliveries so far have only minor delays			
as discovered by a PI team are reported to all the teams and solution	RIME	NO	NO
uted to all at once using a shared GITLAB environment		YES	YES
	SWI	YES	YES
and SW test suites developed for one instrument can be shared with other			
with small adaptation effort	UVS	NO	NO
	RADEM	YES	YES
parison, PEP-Lo instrument not using the common DPU design is facing			
ant cost and schedule overruns		NO	NO

- Despite the initial skepticism, **7/8 out of 12 JUICE units** use the provided DPU • design and/or Basic SW
- Test suite developed by ESA/Airbus for the DPU/Boot SW is used as basis for the • instruments Full Functional Tests (FFT)
- Unifor design
- Unifor •
- Resour •
- Instrur •
- SW bu • distribu
- Tools • teams
- In com • importa

ESA UNCLASSIFIED - For Official Use

juice

Results

2SS

Instr	DPU	Boot SW
GALA	YES	YES
JANUS	YES	YES
JMAG	YES	YES
MAJIS	YES	YES
PEP-Lo	NO	YES
PEP-Hi	NO	NO
RIME	NO	NO
RPWI	YES	YES
SWI	YES	YES
UVS	NO	NO
RADEM	YES	YES
HAA	NO	NO

Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 22

+ 4

European Space Agency

- While in JUICE the common DPU and Basic SW were introduced after instruments selection (end of phase B1) and only recommended to the PIs for adoption, future missions with multiple instruments should require the use of common DPU and Basic SW since the early study phase.
- System engineering early effort can prevent the use of custom FPGA in favor of GR712RC built-in interfaces
- Developing HW and SW "products" in advance is key to safeguard instruments schedule
- Other instruments elements with commonalities could be studied for a similar common development, e.g.:
 - Power Supply Unit
 - ASICs for recurrent functions
 - Common IP cores for FPGAs
 - Common SW libraries

ESA UNCLASSIFIED - For Official Use

Felice Torelli | OBDP 2019 - ESTEC | 25/02/2019 | Slide 23

European Space Agency 🔛 🔜 🖛 🔚 🔚 🔚 🔚 🔚 🚍 🚝 🚱 🖬 🚍 👫 🖕 🖬