HPDP-40
High Performance Data Processor –
A New Generation Space Processor in Demonstration
OBDP, ESTEC, February 25-27, 2019

Tim Helfers, Gerard Vives, Airbus Defence and Space GmbH
Constantin Papadas, Integrated Systems Development SA (ISD SA)
Content

- Introduction
- HPDP-40 Architecture / SW Development
- HPDP-40 Demo Kit
- HPDP-40 Test Status & Power Measurements
- Application Demonstrations
- HPDP-40 Chip Industrialisation
- Conclusion and Outlook
Introduction
Introduction

The development of HPDP has been initiated by the European Space Agency (ESA) and DLR to address the need for a flexible and re-programmable high performance data processor.

It is being implemented in the 65nm radiation hardened technology of ST Microelectronics (C65SPACE).

Key Advantages of HPDP-40 device:

- Ability to meet the increasing requirements of future payloads regarding flexibility, processing power and re-programmability
- Radiation robustness for all earth orbit and planetary exploration missions
- Low power consumption
HPDP Architecture & Software Development Flow
HPDP-40 Architecture (1/2)

HPDP-40 implements the eXtreme Processing Platform (XPP), a runtime reconfigurable data processing engine developed by PACT XPP Technologies AG. XPP configuration:

- 40 ALU Processing Array Elements (16b) running at 250MHz
- 16 columns RAM blocks for memory
- 2 VLIW processor cores (FNC PAE) running at 125MHz
- Connected by a reconfigurable data and event network

The device provides:

- 40Gops of arithmetic operations through parallelism
- 4x 1.1Gbps Streaming Ports
- >4 Mbyte on-chip SRAM
- Memory protections, Watchdog
HPDP-40 Architecture (2/2)
DEFENCE AND SPACE

HPDP-40 Software Development Flow

\[y = ax^2 + bx + c. \]
HPDP-40 Demo Kit
Demokit (1/3)
DEFENCE AND SPACE

Demokit (2/3)
Demokit (3/3) - Cascading
Test Status & Power Management
HPDP Test Status & Power Measurements (1/2)

Tests are being carried out involving the following sub-systems:

✓ SpW Interface (for Remote Booting)
✓ 2 FNC Execution @125MHz
✓ Port 0 Memory Interface (Non-Volatile Memory)
✓ Port 1 Memory Interface (SDRAM)
✓ On-Chip SRAM
✓ Array Configuration @250MHz
✓ DMAs channels activated

The preliminary power consumption data of the board:

✓ 3.3V domain: stand-by 752mW, running 1.82W
✓ 1.2V domain: stand-by/running 670mW
Other Preliminary Tests that have been successfully performed:

- Stream I/O
- Array configuration capability
- Array computational capability
- EEPROM R/W capability

What Remains to be Tested:

- Array Operation/Demonstrations;
- Streaming-I/Os with full speed and with external SERDES devices
- Multi-Board Operation
Application Demonstrations
Streak observations algorithms to detect space debris (1)

✓ **Objective:**
 - *Performance:* process one image in one second or less.
 - *Portability:* suitability to implement data-flow.

![Diagram](image)

- **Input Image (SBSS)**
 - 2048x2048 pixels
 - Grayscale (16 bits depth).

- **Detection Image**
 - 2048x2048 pixels
 - Binary (1 bit depth).
Streak observations algorithms to detect space debris (2)

<table>
<thead>
<tr>
<th>Task</th>
<th>Time [sec]</th>
<th>Origin</th>
<th>Destination</th>
</tr>
</thead>
<tbody>
<tr>
<td>transfImg_StreamI0toDRAM</td>
<td>0.02097</td>
<td>Stream I0</td>
<td>DRAM</td>
</tr>
<tr>
<td>transfSubImg_DRAMtoSRAM</td>
<td>0.02097</td>
<td>DRAM</td>
<td>SRAM</td>
</tr>
<tr>
<td>boundaryTensor</td>
<td>0.67109</td>
<td>SRAM</td>
<td>SRAM</td>
</tr>
<tr>
<td>transfRes_SRAMtoDRAM</td>
<td>0.02097</td>
<td>SRAM</td>
<td>DRAM</td>
</tr>
<tr>
<td>Total [sec]</td>
<td>0.734</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\Rightarrow Real-time requirement is met.

Platform	Performance
HPDP | 1 image in 0.7s
Desktop PC1 with algorithm written in C | 1 image in 12s

1Intel Core i5 Processor clocked at 2.5 GHz with 4 Mbytes of L3 cache
Autonomous Navigation for Lander Units and Rovers (1)

✓ **Objective:**

- **Performance:** Processing Chain per image within one second or less
- **Portability:** suitability to implement data-flow.
Implementations:

- Image Processing Chain executed on HPDP simulator with images of “equivalent” Martian soil
- Pre-processing and Visual Odometry (Harris Corner Detection) can be processed within one second

Next Steps:

- Depth Map computation
- Execution on real hardware
- Image compression CCSDS 122.0-B1
HPDP-40 Chip
Industrialisation
Aiming industrialization and QML-V plus delta ESCC qualification the following activities currently carried out or planned within current projects:

- A dedicated exhaustive test plan has been elaborated
- ATPG Test covering >95% coverage
- Burn-in board in development to test at 125C ambient temperature and under worst case bias conditions. The devices will be operational during the test with a sample code running in a loop and the test will last about 1000h.
- Radiation Tests covering both total dose (up to 300krad Si) and heavy ion (up to 88 MeV-cm2/mg) experiments
- The device is housed in a 625 ceramic PGA package.
Conclusion & Next Steps
Conclusion

- The High Performance Data Processor for Space Applications developed under DLR and ESA contracts is now under commissioning tests in Airbus Ottobrunn and ISD Athens laboratories.
- Applications have been implemented on the simulator and showed suitability of the architecture.

Next Steps

- Porting of applications on the demokit to demonstrate the performance in hardware and show the very efficient power consumption of this architecture.
- Enforce the industrialization of the chip to fit with the next mission requiring high data processing performance.
Contributors

- Laurent Hili, ESA Technical Officer in the frame of KIPSAT activities (ST 65nm rad hard technology)
- Thierry Scholastique and Francois Martin, STM, HPDP Backend Design
- Felix Hormuth, Tobias Disch, von Hörner&Sulgar, DemoKit Development
- Daniel Bretz, Simon Klugseder, Volker Baumgarte, Diego Suarez, Airbus GmbH, HPDP Applications & Test
- George Dramitinos, Yiannis Katelouzos, Olga Dokianaki, Panagiotis Vagiannis, Manolis Lourakis ISD SA
- Vincent Perel, CPE Lyon, Master Student
Thank you