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ABSTRACT 

Modern society depends heavily on satellite 

infrastructure. Conventional communication satellite 

payloads have the drawback to have their architecture 

fixed for the lifetime of the satellite (15 years) and 

therefore cannot adapt to changing communication 

standards and market/application evolution (like 

multimedia applications). A way to alleviate the rigidity 

is the use of on-board reconfigurable technology in 

order to be able to modify the processing of the signals 

performed on-board. 

 

Additionally, the increasing use of new earth-

observation and communication technologies coupled 

with rapidly changing customer needs require a high 

performance and flexible processing technology for on-

board data processing. The algorithmic and processing 

requirements for such processing are of a magnitude 

larger than those which could be successfully handled 

by classical processors. Therefore, there is a need for a 

powerful and flexible processor that can process large 

amounts of data at high speeds, and at the same time, is 

reconfigurable to adapt to changes. 

 

This paper shows part of the work and results of 

simulations obtained up to present date with the High 

Performance Data Processor (HPDP), an array-based 

processor developed by Airbus Defence and Space 

GmbH in Munich and ISD, SA in Greece. Further 

results of tests performed on the hardware are presented. 

 

1. INTRODUCTION 

The HPDP was tested in several data processing 

environments for benchmarking purposes. In this 

context, basic image processing is the first field 

presented in this paper, followed by stereoscopic image 

processing. 

 

For image compression simulations, the CCSDS 122.0-

B-1 [2] algorithm was initially tested. For on-board 

object detection, the Boundary Tensor was tested 

extensively and for autonomous navigation the Sobel 

operator was implemented. For cryptographic 

applications (in the frame of a different study), a 

pseudo-random number generator, the AES-256 and a 

Diffie-Hellman key exchange algorithm were 

successfully ported to the HPDP’s array. 

 

2. HPDP ARCHITECTURE 

The HPDP architecture integrates the XPP 

reconfigurable processing core IP, space suitable 

peripherals and memory interfaces. No specialized 

hardwired cores for specific functions are required since 

the reconfigurable core is fully programmable and 

provides full range processing capabilities. Figure 1 

depicts the major building blocks of the HPDP 

architecture. 

 

 
Figure 1. Overview of HPDP architecture. 

 

The HPDP core i.e. XPP IP, consists of 40 ALU-PAEs 

and 16 RAM-PAEs and typically processes high 

bandwidth data streams. Two FNC-PAEs (Function 

PAEs) are coupled to the array’s communication 

channels via versatile crossbars. The FNC-PAEs 

perform control flow tasks, sequential algorithms and 

system management. They communicate directly 

between each other through vertical communication 

channels. 
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Several DMA controllers transfer data in the 

background. DMA operation is controlled by a FNC-

PAE. FIFOs uncouple the DMA channels from system 

RAM bursts, high speed interfaces and potentially 

stalled pipelines within the XPP. The specialized DMA 

controllers (4D-DMA) generate 4-dimensional access 

patterns for the on-chip buffers (X-RAM) or the off-

chip memory (SRAM or SDRAM memory banks). 

 

The HPDP architecture includes the following memory 

ports: 

 Configuration Memory: The configuration 

memory is made up of PROM/EEPROM or 

SRAM devices and stores the code (boot code 

and/or application code).  

 Data Memory: The memory port can be 

connected with either a SRAM or a SDRAM 

memory bank. 

The communication with the external controller is based 

on the widely used SpaceWire standard.  

In summary the following key features are provided by 

the HPDP architecture: 

 Based on the XPP III Array Processor from 

PACT XPP Technologies providing more than 

15 GigaOps/s. It has 40 ALU Processing Array 

Elements (16-bit), 2 Harvard type VLIW 16-bit 

processor cores (FNC-PAEs), and 256 Kbit 

high speed on-chip RAM with error protection. 

 2 external data memory interfaces for SRAM 

and/or SDRAM devices, error protected, with 

data bandwidth of up to 200 MByte/s 

 4 x 1.6 Gbit/s Streaming Ports  

 Fully reprogrammable platform 

 3 SpaceWire interfaces operating at 100 Mbps 

on each channel with routing capability. 

The architecture includes standard space relevant 

features like: 

 ECC/EDAC and scrubbing function in the 

external memory interfaces 

 Error protection in on-chip memory 

 Triple mode redundancy reset and clock logic 

 Clock synchronous design 

 JTAG scan and BIST 

 Space relevant control interface (SpaceWire). 

 

3. COMPARISON WITH OTHER SPACE 

PROCESSORS 

The currently available European space qualified data 

processors are not able to fulfill the algorithmic and 

processing requirements of future applications. The 

performance versus flexibility comparison between the 

XPP and currently available space processors is shown 

in Figure 2. 

 
Figure 2. Performance comparison. 

 

The SPARC processors including the ERC32 and the 

LEON provide processing performance in order to 

perform data handling as well as control and monitor 

tasks. Data processing is foreseen in the field of low rate 

applications such as attitude and orbit control.  

 

The TSC21020 provides performance for medium rate 

signal processing and data handling applications. It is 

based on the commercially available ADSP21020. Its 

computation units support up to 3 floating points 

operations in parallel for special applications such as 

FFT. The clock speed of the TSC21020, however, is 

nailed down through the external memory interface, 

which is dependent on the memory access time. 

 

As shown in Figure 2, the XPP reaches a much higher 

performance than traditional space processors for 

processing of high data volumes with less context 

switches requiring a reconfiguration of the array. Since 

the array architecture does not need program memory 

and contains internal data memory, the clock speed does 

not need to be tuned to external memory. For data 

streaming applications the speed is only limited by the 

maximum the chip technology and the I/O bandwidth 

can provide.  

 

4. CANDIDATE ALGORITHMS 

For image compression purposes, the CCSDS 122.0-B-1 

algorithm was tested while for on-board object 

detection, both the Boundary Tensor and the Difference 

Method [10] were tested extensively. The difference 

method was never ported to the HPDP as its execution 

needs so many decision loops that it slows down the 

actual performance of the HPDP. 

 

4.1. CCSDS 122.0-B-1 

The CCSDS 122.0-B-1 is an image compression 

standard published in 2005 by the Consultative 

Committee for Space Data Systems (CCSDS), which 

also released other compression standards for arbitrary 

and hyperspectral data. It is a recommendation for 



 

compression of two-dimensional grayscale image data 

and was specifically designed for on-board processing 

of payload data on spacecrafts. The aim of the 

recommendation is to provide an image compression 

standard that can be implemented despite the limited 

computational power and memory [2][ 6]. 

 

Two different modes for lossless and lossy compression 

are supported. Lossless compression is achieved by 

quantization and entropy coding, for lossy compression 

in addition image information is removed, depending on 

compression factors and beginning with the least 

important information. 

 

The compression is based on a Discrete Wavelet 

Transform (DWT). The resulting sub-bands of the 

original image signal are then compressed by a Bit 

Plane Encoder (BPE), as seen in Fig. 1. 

 

 
Figure 3. Functional parts of the CCSDS 122.0-B-1 

recommended standard (CCSDS, 2005). 

 

4.1.1. Results 

Two compression types are possible with this 

implementation of the CCSDS 122.0-B- 1, quality-

limited and volume-limited compression. 

 

 
Figure 4.Total runtime in seconds (100 million cycles) with 

different compression factors (11202 pixels, 16 bpp). 

 

 
Figure 5. BPE part runtimes with increasing compression 

factor (11202 pixels at 16 bpp). 

 

Although the implementation is not yet competitive, the 

performance gained from using the array instead of an 

FNC for the wavelet transform shows the potential of 

the HPDP for this kind of computations. The 

availability of in C programmable co-processors allows 

a developer to port programs incrementally to the 

dataflow array. 

 

4.1.2. Current work 

An implementation of the Discrete Wavelet Transform 

on the HPDP has been completed at Airbus Defence and 

Space. Currently, in the context of the EU H2020-

funded HI-FLY project (776151), ISD focuses primarily 

on the efficient implementation of the bit-plane encoder. 

The goal is to boost performance by mapping as much 

as possible of the bit-plane encoder functionality on the 

dataflow array, a challenging task given the several 

levels of nested loops and branches required. 

 

4.2. Boundary Tensor 

The boundary tensor [3] is a symmetric and positive 

semi definite tensor with non-negative eigenvalues λ1 

and λ2 and with the positive semi-definite symmetric 

tensor T of order 2. 

 

These eigenvalues represent the variations in the pixel 

intensity in the direction of their orthogonal 

eigenvectors. In other words, the boundary tensor 

analyses the area around the processed pixel, and 

provides a local base showing the direction of the 

intensity variation, and the strength of the variation. As 

such, if λ1 and λ2 are both null it means that the area of 

the image has pixels of constant intensity. If λ1 is strictly 

positive and λ2 is null (λ1 ≥ λ2) by definition) then the 

pixel intensity is only changing in the direction given by 

the eigenvector associated to λ1: an edge is detected. If 

λ1 and λ2 are both not null, it means that pixel intensity 

changes in all the directions in the area of the image: a 

corner is detected. 

 

To build the boundary tensor, a set of separable polar 

filters is applied to the image which is to be analysed. 

These filters are defined as the product of an angular 

and a radial function in order to optimize its frequency 

behaviour. It will also help getting the invariance to 

rotations. The first step in applying the filters to the 

image is done by convoluting the image with each filter 

row-like, taking into account the intensity of each pixel 

and the coefficients of the filter. 

 

In practice, the filter coefficients are taken equal to zero 

outside a radius r. r = 4 will be the used value, as it 

represents a good compromise between complexity and 

precision. 

 

The result of the row-like convolution is then again 

convoluted with the filters, but this time column-like. 

For the algorithm, the kernels were chosen equal to 

those taken in [4]. 

 



 

After having simulated several algorithms on the HPDP 

(compression, boundary tensor and several 

communications algorithms) Airbus can point out which 

algorithms are most appropriate for the chosen 

architecture. This architecture, commonly used in space 

applications, is especially performant with loops, as 

these are processed in parallel. However, sequential 

programs are executed slowly. In contrast, a typical PC-

architecture (i.e. programmed in C) is slow for loops, as 

they cannot be executed in parallel, but very fast for 

sequential execution. 

 

There is a hardware limitation that for the HPDP data 

types should be preferably 16-bit fixed-point arithmetic, 

which can be interpreted as using “short integers” 

instead of “reals” in C. For the on-board image 

processing S/W module, this fact must be considered 

when choosing the corresponding algorithms for feature 

detection and filtering. Floating point could be emulated 

on on-board H/W, but with high degradation of 

performance. 

 

The boundary tensor can be split in the odd energy 

which accumulates in the step edges and in the even 

energy which accumulates in the roof edges. 

 

The final step of the algorithm is to determine if a pixel 

corresponds to a resident space object (RSO) or not. In 

order to do so, it is necessary to extract from the 

boundary tensor a measure of the probability of the 

pixel being an edge. The tensor trace is actually the 

energy contained in the edges: it is the sum of the 

eigenvalues of the tensor. 

 

4.2.1. Properties of the Boundary Tensor 

Concerning the time needed to process one single image 

using the Boundary Tensor, the HPDP implementation 

needs over 0.734 s, while the same implementation of 

the algorithm running on a Microsemi RTG4 FPGA 

only needs 0.06 s, which is much faster than the 

requirement of 1 s for processing 2 images for the on-

board image processing project. The difference in 

timing between the two implementations can be 

explained by the fact the FPGA can process all the 

convolutions at the same time, as well as calculating the 

output, without needing to write any data in an external 

memory, unlike the HPDP. The resulting images show 

that the boundary tensor algorithm can also detect 

streaks of different intensity.  

 

Some small differences were observed between the 

results of the implementation on both architectures 

(HPDP and RTG4). After an analysis of the dataflow of 

both architectures, it has been noted that the one on the 

HPDP had to scale up the kernel coefficients with a 

multiplying factor in order to make them bigger than 1. 

The RTG4 architecture uses fractional length to deal 

with this problem. The kernels used by the HPDP 

simulation must make the architecture a more sensitive 

one, as it seems to detect more debris, but also gets 

more noise. As a conclusion, both hardware 

architectures are comparable in terms of output results; 

the only difference is that the HPDP version changes the 

kernel coefficients and the threshold value while scaling 

them up, which takes processing time [9]. 

 

5. IMAGE-BASED ODOMETRY 

In the frame of a demonstrator for image processing 

Airbus created a robotic platform to simulate a 

stereoscopic environment where images will be 

processed and autonomous navigation will be explored 

as in [11]. 

 

In order to prove that the HPDP is an ideal candidate for 

optical autonomous navigation applications, a test 

environment, STEVE (STEreoscopic Vision 

Environment), was developed.  

 

 
Figure 6. Side image of STEVE (STEreoscopic Vision 

Environment). 

 

Based on a commercial robotic platform with 6 

motorised wheels and 2 cameras for stereoscopic vision, 

STEVE delivers images from two red-green-blue (RGB) 

cameras to the desktop HPDP simulator for image 

filtering and processing activities.  

 

5.1. Autonomous navigation algorithm 

At the beginning of the image processing chain (see 

Figure 7) of the autonomous navigation, the two red 

green blue (RGB) cameras act as the two eyes of 

humans and the rover evaluates the distances with 

different objects from stereo images. 

 



 

 

 
Figure 7. Autonomous navigation processing chain. 

 

The pre-processing module is responsible of the 3D 

rectification and the distortion that a camera could have. 

The utility of the 3D reconstruction is that each image is 

taken regarding to a common referential that needs to be 

known. 

 

Each image is processed by converting the RGB 

intensity from the camera into a grayscale value. At the 

output, pixels will carry information of the scene which 

varies between 0 and 255 (8 bits) instead of 24 bits (8 

bits per colour). The Sobel operator is used in image 

processing particularly for edge detection [7]. It is based 

on the convolution with two kernels (see tables below) 

that compute the vertical and horizontal change in 

intensity over the image (gradient). 
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Figure 8. Sobel operator masks. At the top, the x 

component and at the bottom the y component. 

 

One or two images are passed either to the visual 

odometry or the depth map computation. To determine 

the motion performed of the robot, some key points of 

the frame are extracted and tracked over time. The 

Harris Corner/edge detection reuses the two directional 

gradients of the Sobel operation to compute the 

“cornerness” of a region. By shifting a window all 

around the frame and computing the change of intensity 

over eight directions, it determines the nature of the area 

(see Figure 9). 

 

 
Figure 9. Representation of the Harris window on different 

regions. 

 

The analysis of the stereo images is based on basic 

stereoscopic geometry and matching algorithm. One key 

element is the disparity which expresses the shift of 

pixel of the exact same region between the two images. 

This correlation criterion is calculated by comparing a 

fixed window from the first image with a shifting 

window along the same row (see Figure 10). The sum of 

absolute distances of intensities of each respective pixel 

of the windows characterizes the metric evaluation 

criteria. Then, it is sufficient to get the smallest criteria 

to get the most likely match between the two windows 

to evaluate the real distance. 

 

 
Figure 10. Schematic of the Stereo correlation process [8]. 

 

5.2. Results and performance 

To see the performance of the algorithm, a reproduction 

of an “equivalent” Martian soil was done. For that 

experiment, boxes which represent obstacles were 

spread all around the scene as rocks of different sizes 

(see Figure 11). And a new pair of images (1280x720 

pixels) were recorded and passed into the simulator of 

the HPDP. 

 

 
Figure 11. Top view of the scene. 



 

 

The XPP simulator (XPPSIM) is simulating the 

behaviour of the HPDP and continuously displaying the 

cycle currently simulates. The different performances of 

each module were seized and gathered as well as the 

quality of the images. 

 
Figure 12. Performance of each module inside the HPDP. 

 

However, due to the very low speed of the HPDP 

simulator, the depth map computation was achieved on 

a degraded image (200x100 pixels) only. This means 

that resolution was voluntarily reduced just to increase 

the speed of the simulation. Figure 13 shows the 

different resulting images (933x469 pixels) at each 

stage of the image processing chain. 

 

 

Figure 13. Result of the Right and Left images (before 

motion) at each different step of the algorithm. Note that 

images produced by the Harris algorithm were superposed 

with the original input to visualize the features. 

 

Each step fulfils the requirements of each algorithm. A 

precision regarding the Harris images, the corner are 

blacks and white for the edges. 

 

If we consider the maximum speed of the rover with a 

peak at around 5 cm/s, the Harris Corner detection could 

run, subject that the rest of the visual odometry 

algorithm (feature descriptor, tracking and motion 

estimation) are taking less than 975ms. The 3D scene 

detected by both cameras reveals a correct map, since 

each black and white pixel encodes distance 

information. Also, degradation from black (bottom of 

the picture) to white (top) shows the linear increase of 

the distance over the frame. However, the obstacles are 

hard to be spotted. 

 

If the images were larger, such as 1024x1024 pixels, the 

images would have been treated in the exact same way 

but with more details due to a better resolution. Indeed, 

with more information of the scene perceived, the 

Harris Corner detection could spot more corners and in 

a more accurate way. This effect can also affect the 

depth map computation by giving more details of the 

studied region. 

 

5.3. Conclusion 

In conclusion, the objectives of the project were 

achieved by implementing different algorithms inside of 

the HPDP to assess its qualities to insure autonomous 

navigation processes. This architecture is already 

showing good performance in execution time and 

overall image quality. 

 
6. CONCLUSION 

The High Performance Data Processor for Space 

Applications developed at Airbus Defence and Space 

GmbH features a configurable fine grained dataflow 

array. The telecommunication algorithms implemented 

in the past meet the bandwidth performance 

requirements. Image processing algorithms are usually 

very demanding and have a high data throughput, which 

bring the HPDP to its limits. Even though the HPDP is 

in simulations not as performant as other platforms, it 

still offers enough processing power to fulfil many on-

board functions.  
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