
1 INTRODUCTION

SCISYS is experienced in producing resilient

software implementations of critical space flight

algorithms. Recent developments in space qualified

FPGA technologies have enabled a range of new

applications for hardware accelerated algorithms for

space applications. Where previously data volumes

and constraints on execution time, power budget and

processing power would have made on board

processing of data infeasible, new developments in

FPGA technology now allow for more data handling

to occur on board of the spacecraft, permitting for

more flexibility in mission design and operation as

well as more efficient utilization of the available

bandwidth. The reduction in execution time and

resource usage allows for more complex algorithms

to be used in a wider range of use cases. One such

case is for on board data processing such as visual

odometry, which determines the location of a

vehicle based on processing done on image data

gathered by an on board camera. This paper presents

the partial transfer of the VisLoc visual odometry

algorithm for Mars to an FPGA and discusses a

wider range of potential applications in space.

2 VISLOC VISUAL ODOMETRY

The accurate localization of a vehicle on the Martian

surface is crucial in allowing for operation of the

vehicle to continue while direct contact to earth is

interrupted. Due to the limited amount of time

communication with a spacecraft in Mars orbit is

possible, determination of the vehicle’s current

position and attitude has to be carried out locally.

This additionally allows for the limited bandwidth to

be used more effectively, allowing for more

scientific data to be transmitted.

Solutions for local navigation estimates in the past

have included wheel odometry, which measures the

rotation of the rover’s wheels to extrapolate the

distance travelled. This approach however is very

terrain dependent, as things like wheel slippage or

stuck wheels will steadily introduce an accumulating

error or cause outright erroneous readings.

One possible solution to this is to make estimates

based on visual data gathered by cameras on board

of the vehicle. By making estimates based on the

relative movement of the camera location from one

frame to the subsequent frame, the location data is

independent of the terrain, achieving a high degree

of accuracy in determination of both position and

attitude even in difficult conditions.

This is achieved via the extraction of features from

a frame which represent highly recognizable pixels.

These features are then matched with the identified

features from the subsequent frame. When a pair of

features is recognized, the difference in location

from one frame to the next is used to geometrically

infer the movement of the camera in between the

frames. This means visual odometry can be

performed even in challenging terrain as long as the

image offers enough light and definition for features

to be recognizable, and as long as the movement

between frames is not so large that features have

moved off the edge of the frame before the next

image is taken.

The Visual Localisation flight software algorithm

(VisLoc) was developed for the ExoMars rover. It is

based on the core algorithm known as OVO (Oxford

Visual Odometry), developed at the University of

Oxford [1]. VisLoc was adapted over a number of

projects to be a viable method of visual localization

for Martian surface vehicles [2]. After subsequent

further development by SCISYS as part of the

European Space Agency’s ExoMars Rover Mission

the VisLoc algorithm reached a technology

readiness level (TRL) of 8.

In this paper we discuss the results of a study

investigating the integration of an FPGA board into

the VisLoc algorithm to accelerate the execution

time of VisLoc with the aim of achieving an

execution frequency of 1Hz while maintaining full

parity between the software based algorithm and its

accelerated counterpart. This accelerated version of

the algorithm would then be deployed on European

Space Agency’s Sample Fetching Rover (SFR),

which intends to cover considerably larger distances

than ExoMars in a similar timeframe [3].

3 FPGA INTEGRATION

Being part of a vehicle on Mars poses unique

constraints for a visual localisation algorithm due to

very limited availability of CPU and electrical power

as well as memory. While the low velocity of a

Martian vehicle can largely eliminate difficulties

such as motion blur which make visual odometry

difficult on earth, the Martian environment and Mars

rovers offer their own set of unique additional

challenges for visual localisation. Besides the

lowered mass and power budgets, low image

resolution of 512x512 pixels, stark shadows

covering large parts of the image, rover parts

protruding into the frame and the potential for dust

storms can greatly hinder the processing of an

image. Large parts of images are also covered by the

sky, which is not suitable for feature detection. The

algorithm must thus be able to process images in real

time with minimal resources, while correctly

identifying and mitigating a number of factors that

could render parts of an image unusable.

This large amount of processing overhead involves a

large number of mathematical operations which

HARDWARE ACCELERATION OF A VISUAL
LOCALISATION SYSTEM ON THE SURFACE OF MARS

Daniel Townson
1
, Niklaus Kamm

1
, Mark Woods

 1

1SCISYS, 23 Clothier Rd., Bristol, BS4 5SS, UK, E-mail: daniel.townson@scisys.co.uk

1SCISYS, 23 Clothier Rd., Bristol, BS4 5SS, UK, E-mail: niklaus.kamm@scisys.co.uk

1SCISYS, 23 Clothier Rd., Bristol, BS4 5SS, UK, E-mail: mark.woods@scisys.co.uk

mailto:daniel.townson@scisys.co.uk
mailto:niklaus.kamm@scisys.co.uk
mailto:mark.woods@scisys.co.uk

slow down execution of the algorithm, but can be

greatly accelerated by making use of pipelining and

parallel processing on FPGA hardware.

By demonstrating that partial porting of the

algorithm’s functionality to an FPGA can result in

significant reduction of execution time, we could

provide a range of options allowing for a trade-off

between resource usage and execution time.

Suitability for hardware acceleration was assessed

on a case by case basis for individual software

modules of the algorithm. Factors such as sequential

logic and dependencies within the process could

prevent pipelining and parallelization, making

modules less suitable for hardware acceleration.

Additionally, the limitation in bandwidth of

streaming interfaces between the CPU and FPGA

introduced fixed data streaming delays before

processing on the FPGA could commence, so the

architectural design was adjusted to minimize

streaming interfaces where possible.

Special care was given to ensure that outputs of the

accelerated algorithm were equal to the software

version in order to limit the effect on the TRL. This

was validated using a series of simulated

trajectories, such as the one in Figure 1 below,

representing the expected conditions on the Martian

surface, allowing for statistical analysis of results to

3-sigma accuracy. Parity of results was retained

across the full validation dataset of the ExoMars

mission.

Figure 1: Example Frame of a generated Mars vehicle

trajectory showing feature matches as yellow lines

Adding additional functionality to the FPGA then

resulted in progressively diminishing returns, while

increasing the required size of the FPGA. Due to the

limited time frame of the study, the aim was to not

exceed the capabilities of a medium BRAVE FPGA,

which contains 35000 look-up tables (LUTs) [4].

This led to a total of eleven functions being

transferred to hardware.

While further transfer of functionality to the FPGA,

potentially even to the extent of fully running the

algorithm on the hardware, is theoretically possible,

it was not deemed feasible to achieve within the time

constraints and it would have required considerable

changes to the source algorithm, potentially

affecting the accuracy of the resulting data in the

process.

4 TESTING AND VALIDATION

VisLoc was thoroughly tested on both simulated and

real Mars representative trajectories. Real

trajectories were taken from the SEEKER trial in the

Atacama Desert in Chile, where a representative

rover moved through a Mars-like environment

autonomously for several kilometers [5]. Simulated

trajectories were either produces by SCISYS or

provided by Airbus. The SEEKER trajectories

allowed for testing under very realistic

circumstances, providing real camera images from a

representative vehicle in a very close approximation

of the operational environment on Mars. Simulated

trajectories meanwhile were used for targeted testing

of specific scenarios, such as heavy shadows and

low texture ground materials as shown in Figure 2

below.

Figure 2: Heavily shadowed simulated image

After verifying that VisLoc was capable of meeting

its requirement of an accuracy of 1% of total

distance travelled in both real and simulated

trajectories, the algorithm was tested under extreme

conditions to determine the limitations of

environments that were still sufficient for accurate

visual localisation.

Individual test cases were created investigating the

effects of optical depth, camera shutter speed and

vehicle velocity.

VisLoc was found to be still within requirement

accuracy for vehicle velocities of up to 16cm/s,

double the intended velocity of the Mars Sample

Fetch Rover. It was also capable of handling optical

depth values of up to 2.6, simulating severe dust

storms or very dark dusk or dawn conditions using

images such as the one in Figure 3. Shutter speed

was the most significant indicator of result accuracy,

with large variance between test values ranging from

10ms to 150ms.

Figure 3: Simulated image at optical depth 2.6

5 PERFORMANCE ANALYSIS

During the original development of the VisLoc

algorithm it was to be run on board of the ExoMars

rover which was equipped with a LEON2 processor

running at 96MHz. This study examined the

suitability of the algorithm for the European Sample

Fetching Rover (SFR), which is intended to be

running on a LEON4 processor at 250MHz. Since test

results were only available for execution times when

using a LEON2 processor, times for a LEON4

processor were estimated assuming a roughly linear

correlation between processor frequency and

execution time.

The software implementation of the VisLoc algorithm

had a worst case execution time of 3772ms on a

LEON2 processor, which results in an estimated time

of 1448ms on a LEON4 processor. This suggests that

with the upgraded processor frequency used on SFR,

to reach an execution frequency of 1Hz, a reduction

of execution time of roughly 31% or 448ms is

necessary.

Figure 4 below shows the reduction of the worst case

execution time as algorithm functions are gradually

transferred to the FPGA on both processors. The

order of the transferred functions is in this case not

sequential but instead functions were prioritized based

on their suitability for the FPGA and their overall

execution time during a single instance of the

algorithm.

Figure 4: Worst case execution time with a variable

number of hardware functions

The implementation of the major data processing

steps of the algorithm resulted in a significant

reduction of overall execution time, with the transfer

of only five functions resulting in an overall reduction

of execution time of 36.08% on the LEON2

processor.

The transfer of the full set of functions resulted in a

total acceleration of 1661ms or 44.03% for a LEON2

processor. Applying hardware acceleration to the

same functions on a LEON4 processor would result in

a gain of 653ms or 45.09%, showing that FPGA

acceleration could reduce execution time regardless of

the processor clock speed when viewed relative to the

overall execution time of the algorithm and would be

sufficient to achieve an execution frequency of 1Hz.

However the actual yield of the hardware acceleration

as a percentage of the software execution time for the

same functions is diminishing as the clock speed of

the processor increases. The execution time of

accelerated functions on LEON2 was reduced by

88.24% while on the LEON4 processor the reduction

was only 74.68%. This would suggest that given a

sufficiently high processor frequency, depending on

the individual mission constraints, hardware

acceleration may not be needed for the algorithm to

perform at a frequency that is sufficient for navigation

on Mars.

6 OTHER APPLICATIONS

In parallel with the evaluation of the original OVO

VO algorithms the autonomy and robotics team at

SCISYS also continued their development of science

autonomy techniques [6]. These were integrated and

tested with SCISYS’ GNC system (including VO) in

representative field tests in the Atacama [7]. During

these trials several kilometers of autonomous driving

data was collected and subsequently analyzed. This

allowed for identification of potential areas of

functional overlap and acceleration via an FPGA. Due

to the large amount of data that has to be processed

during machine learning applications, the potential

acceleration provided by an FPGA is very attractive.

These efforts have now been taken further in

SCISYS’ ESA Novelty or Anomaly Hunter (NOAH)

activity, which strives to process image data on board

the vehicle and autonomously detect potentially

scientifically interesting novelties or anomalies [8].

More generally, FPGAs could be used in a variety of

scenarios where sensors provide a volume of data that

is not suitable for transmission with the bandwidth

0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10

m
s

Hardware Functions

Worst Case Execution Time

LEON2 LEON4

restrictions faced by most spacecraft. Pre-processing

the data on-board, both by selection and prioritization

via filters or machine learning, or by compression can

greatly increase the efficiency of bandwidth usage,

and the time and resources required to perform it can

potentially be greatly reduced by using FPGAs.

7 CONCLUSION

Over the course of the study it was determined that

hardware acceleration using an FPGA can

significantly reduce the overall execution time of a

visual odometry algorithm, allowing for processing of

sufficient data to navigate accurately across extensive

distances even at speeds far greater than current

generation Mars rovers. Transfer of algorithm

functionality to hardware can be performed in a

modular manner while maintaining navigation

accuracy and can still yield significant acceleration, as

long as software modules are previously scrutinized

for hardware suitability. A fixed delay created by the

bandwidth of streaming interfaces between CPU and

FPGA hardware introduces a latency into the system.

Given a modular design, modules should thus be

chosen in a manner that minimizes the need for

transfer of large data volumes between software and

hardware. Given a sufficiently high processor

frequency, hardware acceleration and the associated

reduction in TRL of the new platform may become

unnecessary depending on specific mission

constraints. In certain cases software execution may

even outpace the hardware implementation of an

individual module due to the head start granted by the

lack of data streaming delay. In such a case, a

modular approach to hardware acceleration may not

be the best choice for the given use case, as a full

software solution requires significantly less

development time, while a full hardware solution will

bring significantly higher reduction in execution time

but requires an extended period of development and

testing. Modular approaches are thus most suitable to

algorithms that feature isolated sections of highly

complex mathematical operations with limited

dependencies which can be implemented on an FPGA

with maximum yield in terms of execution time while

minimizing the requirement for data exchange.

8 REFERENCES
[1] W. Churchill and P. Newman, “Experience Based

Navigation: Theory, Practice and

Implementation,” Oxford University, Oxford,

2012.

[2] M. Woods, A. Shaw, A. Gily and F. Didot, “High-

level autonomy for long term exploration

robotics,” in 11th Symposium on Advanced Space

Technologies, Robotics and Automation,

Noordwijk, 2011.

[3] A. Merlo, J. Larranaga and P. Falkner, “Sample

Fetching Rover (SFR) for MSR,” in Advanced

Space Technologies, Robotics and Automation,

Noordwijk, 2013.

[4] NanoXplore, From Radiation Hardening To

BRAVE FPGA devices, Geneva: CERN, 2017.

[5] M. Woods, A. Shaw, E. Tidey, B. V. Pham, L.

Simon, R. Mukherji, B. Maddison, G. Cross, A.

Kisdi, W. Tubby, G. Visentin and G. Chong,

“Seeker - Autonomous Long-range Rover

Navigation for Remote Exploration,” Journal of

Field Robotics, pp. 940-968, 2014.

[6] M. Woods, A. Shaw, I. Wallace, M. Malinowski

and P. Rendell, “Demonstrating Autonomous Mars

Rover Science Operations in the Atacama Desert,”

in I-SAIRAS, Sapporo, 2010.

[7] M. Woods, A. Shaw and I. Wallace, “Chameleon

Field Trial: Toward Efficient, Terrain Sensitive

Navigation,” in Advanced Space Technologies,

Robotics and Automation, Noordwijk, 2015.

[8] N. Reads, M. Woods and S. Karachalios, “Novelty

or Anomaly Hunter - Driving next-generation

science autonomy with large high quality dataset

collection,” in I-SAIRAS, Madrid, 2018.

