
1 INTRODUCTION 

SCISYS is experienced in producing resilient 

software implementations of critical space flight 

algorithms. Recent developments in space qualified 

FPGA technologies have enabled a range of new 

applications for hardware accelerated algorithms for 

space applications. Where previously data volumes 

and constraints on execution time, power budget and 

processing power would have made on board 

processing of data infeasible, new developments in 

FPGA technology now allow for more data handling 

to occur on board of the spacecraft, permitting for 

more flexibility in mission design and operation as 

well as more efficient utilization of the available 

bandwidth. The reduction in execution time and 

resource usage allows for more complex algorithms 

to be used in a wider range of use cases. One such 

case is for on board data processing such as visual 

odometry, which determines the location of a 

vehicle based on processing done on image data 

gathered by an on board camera. This paper presents 

the partial transfer of the VisLoc visual odometry 

algorithm for Mars to an FPGA and discusses a 

wider range of potential applications in space. 

 

2 VISLOC VISUAL ODOMETRY 

The accurate localization of a vehicle on the Martian 

surface is crucial in allowing for operation of the 

vehicle to continue while direct contact to earth is 

interrupted. Due to the limited amount of time 

communication with a spacecraft in Mars orbit is 

possible, determination of the vehicle’s current 

position and attitude has to be carried out locally. 

This additionally allows for the limited bandwidth to 

be used more effectively, allowing for more 

scientific data to be transmitted.  

Solutions for local navigation estimates in the past 

have included wheel odometry, which measures the 

rotation of the rover’s wheels to extrapolate the 

distance travelled. This approach however is very 

terrain dependent, as things like wheel slippage or 

stuck wheels will steadily introduce an accumulating 

error or cause outright erroneous readings. 

One possible solution to this is to make estimates 

based on visual data gathered by cameras on board 

of the vehicle. By making estimates based on the 

relative movement of the camera location from one 

frame to the subsequent frame, the location data is 

independent of the terrain, achieving a high degree 

of accuracy in determination of both position and 

attitude even in difficult conditions.  

This is achieved via the extraction of  features from 

a frame which represent highly recognizable pixels. 

These features are then matched with the identified 

features from the subsequent frame. When a pair of 

features is recognized, the difference in location 

from one frame to the next is used to geometrically 

infer the movement of the camera in between the 

frames. This means visual odometry can be 

performed even in challenging terrain as long as the 

image offers enough light and definition for features 

to be recognizable, and as long as the movement 

between frames is not so large that features have 

moved off the edge of the frame before the next 

image is taken. 

The Visual Localisation flight software algorithm 

(VisLoc) was developed for the ExoMars rover. It is 

based on the core algorithm known as OVO (Oxford 

Visual Odometry), developed at the University of 

Oxford [1]. VisLoc was adapted over a number of 

projects to be a viable method of visual localization 

for Martian surface vehicles [2]. After subsequent 

further development by SCISYS as part of the 

European Space Agency’s ExoMars Rover Mission 

the VisLoc algorithm reached a technology 

readiness level (TRL) of 8. 

In this paper we discuss the results of a study 

investigating the integration of an FPGA board into 

the VisLoc algorithm to accelerate the execution 

time of VisLoc with the aim of achieving an 

execution frequency of 1Hz while maintaining full 

parity between the software based algorithm and its 

accelerated counterpart. This accelerated version of 

the algorithm would then be deployed on European 

Space Agency’s Sample Fetching Rover (SFR), 

which intends to cover considerably larger distances 

than ExoMars in a similar timeframe [3]. 

 

3 FPGA INTEGRATION 

Being part of a vehicle on Mars poses unique 

constraints for a visual localisation algorithm due to 

very limited availability of CPU and electrical power 

as well as memory. While the low velocity of a 

Martian vehicle can largely eliminate difficulties 

such as motion blur which make visual odometry 

difficult on earth, the Martian environment and Mars 

rovers offer their own set of unique additional 

challenges for visual localisation. Besides the 

lowered mass and power budgets, low image 

resolution of 512x512 pixels, stark shadows 

covering large parts of the image, rover parts 

protruding into the frame and the potential for dust 

storms can greatly hinder the processing of an 

image. Large parts of images are also covered by the 

sky, which is not suitable for feature detection. The 

algorithm must thus be able to process images in real 

time with minimal resources, while correctly 

identifying and mitigating a number of factors that 

could render parts of an image unusable.  

This large amount of processing overhead involves a 

large number of mathematical operations which 
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slow down execution of the algorithm, but can be 

greatly accelerated by making use of pipelining and 

parallel processing on FPGA hardware.  

By demonstrating that partial porting of the 

algorithm’s functionality to an FPGA can result in 

significant reduction of execution time, we could 

provide a range of options allowing for a trade-off 

between resource usage and execution time.  

Suitability for hardware acceleration was assessed 

on a case by case basis for individual software 

modules of the algorithm. Factors such as sequential 

logic and dependencies within the process could 

prevent pipelining and parallelization, making 

modules less suitable for hardware acceleration. 

Additionally, the limitation in bandwidth of 

streaming interfaces between the CPU and FPGA 

introduced fixed data streaming delays before 

processing on the FPGA could commence, so the 

architectural design was adjusted to minimize 

streaming interfaces where possible.  

Special care was given to ensure that outputs of the 

accelerated algorithm were equal to the software 

version in order to limit the effect on the TRL. This 

was validated using a series of simulated 

trajectories, such as the one in Figure 1 below, 

representing the expected conditions on the Martian 

surface, allowing for statistical analysis of results to 

3-sigma accuracy. Parity of results was retained 

across the full validation dataset of the ExoMars 

mission. 

 
Figure 1: Example Frame of a generated Mars vehicle 

trajectory showing feature matches as yellow lines 

Adding additional functionality to the FPGA then 

resulted in progressively diminishing returns, while 

increasing the required size of the FPGA. Due to the 

limited time frame of the study, the aim was to not 

exceed the capabilities of a medium BRAVE FPGA, 

which contains 35000 look-up tables (LUTs) [4]. 

This led to a total of eleven functions being 

transferred to hardware. 

While further transfer of functionality to the FPGA, 

potentially even to the extent of fully running the 

algorithm on the hardware, is theoretically possible, 

it was not deemed feasible to achieve within the time 

constraints and it would have required considerable 

changes to the source algorithm, potentially 

affecting the accuracy of the resulting data in the 

process.  

 

4 TESTING AND VALIDATION 
 

VisLoc was thoroughly tested on both simulated and 

real Mars representative trajectories. Real 

trajectories were taken from the SEEKER trial in the 

Atacama Desert in Chile, where a representative 

rover moved through a Mars-like environment 

autonomously for several kilometers [5]. Simulated 

trajectories were either produces by SCISYS or 

provided by Airbus. The SEEKER trajectories 

allowed for testing under very realistic 

circumstances, providing real camera images from a 

representative vehicle in a very close approximation 

of the operational environment on Mars. Simulated 

trajectories meanwhile were used for targeted testing 

of specific scenarios, such as heavy shadows and 

low texture ground materials as shown in Figure 2 

below. 

 

 
Figure 2: Heavily shadowed simulated image 

After verifying that VisLoc was capable of meeting 

its requirement of an accuracy of 1% of total 

distance travelled in both real and simulated 

trajectories, the algorithm was tested under extreme 

conditions to determine the limitations of 

environments that were still sufficient for accurate 

visual localisation. 

Individual test cases were created investigating the 

effects of optical depth, camera shutter speed and 

vehicle velocity. 

VisLoc was found to be still within requirement 

accuracy for vehicle velocities of up to 16cm/s, 

double the intended velocity of the Mars Sample 

Fetch Rover. It was also capable of handling optical 

depth values of up to 2.6, simulating severe dust 

storms or very dark dusk or dawn conditions using 

images such as the one in Figure 3. Shutter speed 

was the most significant indicator of result accuracy, 

with large variance between test values ranging from 

10ms to 150ms. 

 



 
Figure 3: Simulated image at optical depth 2.6 

 

5 PERFORMANCE ANALYSIS 

During the original development of the VisLoc 

algorithm it was to be run on board of the ExoMars 

rover which was equipped with a LEON2 processor 

running at 96MHz. This study examined the 

suitability of the algorithm for the European Sample 

Fetching Rover (SFR), which is intended to be 

running on a LEON4 processor at 250MHz. Since test 

results were only available for execution times when 

using a LEON2 processor, times for a LEON4 

processor were estimated assuming a roughly linear 

correlation between processor frequency and 

execution time. 

The software implementation of the VisLoc algorithm 

had a worst case execution time of 3772ms on a 

LEON2 processor, which results in an estimated time 

of 1448ms on a LEON4 processor. This suggests that 

with the upgraded processor frequency used on SFR, 

to reach an execution frequency of 1Hz, a reduction 

of execution time of roughly 31% or 448ms is 

necessary. 

Figure 4 below shows the reduction of the worst case 

execution time as algorithm functions are gradually 

transferred to the FPGA on both processors. The 

order of the transferred functions is in this case not 

sequential but instead functions were prioritized based 

on their suitability for the FPGA and their overall 

execution time during a single instance of the 

algorithm. 

 
Figure 4: Worst case execution time with a variable 

number of hardware functions 

The implementation of the major data processing 

steps of the algorithm resulted in a significant 

reduction of overall execution time, with the transfer 

of only five functions resulting in an overall reduction 

of execution time of 36.08% on the LEON2 

processor.  

The transfer of the full set of functions resulted in a 

total acceleration of 1661ms or 44.03% for a LEON2 

processor. Applying hardware acceleration to the 

same functions on a LEON4 processor would result in 

a gain of 653ms or 45.09%, showing that FPGA 

acceleration could reduce execution time regardless of 

the processor clock speed when viewed relative to the 

overall execution time of the algorithm and would be 

sufficient to achieve an execution frequency of 1Hz. 

However the actual yield of the hardware acceleration 

as a percentage of the software execution time for the 

same functions is diminishing as the clock speed of 

the processor increases. The execution time of 

accelerated functions on LEON2 was reduced by 

88.24% while on the LEON4 processor the reduction 

was only 74.68%. This would suggest that given a 

sufficiently high processor frequency, depending on 

the individual mission constraints, hardware 

acceleration may not be needed for the algorithm to 

perform at a frequency that is sufficient for navigation 

on Mars. 

6 OTHER APPLICATIONS 

In parallel with the evaluation of the original OVO 

VO algorithms the autonomy and robotics team at 

SCISYS also continued their development of science 

autonomy techniques [6]. These were integrated and 

tested with SCISYS’ GNC system (including VO) in 

representative field tests in the Atacama [7]. During 

these trials several kilometers of autonomous driving 

data was collected and subsequently analyzed. This 

allowed for identification of potential areas of 

functional overlap and acceleration via an FPGA. Due 

to the large amount of data that has to be processed 

during machine learning applications, the potential 

acceleration provided by an FPGA is very attractive. 

These efforts have now been taken further in 

SCISYS’ ESA Novelty or Anomaly Hunter (NOAH) 

activity, which strives to process image data on board 

the vehicle and autonomously detect potentially 

scientifically interesting novelties or anomalies [8]. 

More generally, FPGAs could be used in a variety of 

scenarios where sensors provide a volume of data that 

is not suitable for transmission with the bandwidth 
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restrictions faced by most spacecraft. Pre-processing 

the data on-board, both by selection and prioritization 

via filters or machine learning, or by compression can 

greatly increase the efficiency of bandwidth usage, 

and the time and resources required to perform it can 

potentially be greatly reduced by using FPGAs. 

7 CONCLUSION 

Over the course of the study it was determined that 

hardware acceleration using an FPGA can 

significantly reduce the overall execution time of a 

visual odometry algorithm, allowing for processing of 

sufficient data to navigate accurately across extensive 

distances even at speeds far greater than current 

generation Mars rovers. Transfer of algorithm 

functionality to hardware can be performed in a 

modular manner while maintaining navigation 

accuracy and can still yield significant acceleration, as 

long as software modules are previously scrutinized 

for hardware suitability. A fixed delay created by the 

bandwidth of streaming interfaces between CPU and 

FPGA hardware introduces a latency into the system. 

Given a modular design, modules should thus be 

chosen in a manner that minimizes the need for 

transfer of large data volumes between software and 

hardware. Given a sufficiently high processor 

frequency, hardware acceleration and the associated 

reduction in TRL of the new platform may become 

unnecessary depending on specific mission 

constraints. In certain cases software execution may 

even outpace the hardware implementation of an 

individual module due to the head start granted by the 

lack of data streaming delay. In such a case, a 

modular approach to hardware acceleration may not 

be the best choice for the given use case, as a full 

software solution requires significantly less 

development time, while a full hardware solution will 

bring significantly higher reduction in execution time 

but requires an extended period of development and 

testing. Modular approaches are thus most suitable to 

algorithms that feature isolated sections of highly 

complex mathematical operations with limited 

dependencies which can be implemented on an FPGA 

with maximum yield in terms of execution time while 

minimizing the requirement for data exchange. 
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