Image dequantization for hyperspectral lossy compression with convolutional neural networks

Diego Valsesia Enrico Magli

European Workshop on On-Board Data Processing (OBDP2019) February 26th 2019

POLITECNICO DI TORINO

CCSDS 123.0-B-2

- New (February 2019) CCSDS standard for **onboard lossy compression** of hyperspectral images
- Extends previous lossless standard
- Predictive coding approach:
 - Predict pixel value from a causal neighborhood
 - Quantize prediction residual
 - Entropy encode quantized residual

CCSDS 123.0-B-2

- Many prediction modes depending on how to use the neighboring pixels
- In particular:
 - Wide neighbor-oriented local sums: best compression ratios
 - Narrow neighbor-oriented local sums: avoids pixel on the left
 - **Column-oriented** local sums: only pixel on top is used (e.g., for striped images)

wide neighbororiented narrow neighbororiented column-oriented

Why narrow sums? The throughput problem

- Narrow sums avoid the pixel on the left
- The quantizer is inside the prediction loop
- Before predicting the new pixel, all the pixels in the neighborhood must be **reconstructed** from the quantized residuals
 - Data dependency!
- The **pixel on the left** is coded immediately before
- **Waiting** for it causes a **bottleneck** in throughput (no parallelization is possible)
- This issue is not present in lossless mode (no reconstruction needed):

~4x faster than lossy

So, do we really need the in-loop quantizer?

- Alternative solution:
 - Prequantize all the raw pixels
 - Run a lossless predictor
 - $\circ \quad {\rm Entropy} \ {\rm code} \ {\rm the} \ {\rm residuals}$
- Lossless predictor solves the throughput problem
- Known to be **suboptimal** in terms of rate-distortion performance (especially at low bitrates)
- Can we recover this suboptimality with some clever processing on-ground?

Convolutional Neural Networks

• Convolutional Neural Networks (CNNs) are made of layers with a filter bank and a nonlinear activation function

- CNNs are state of the art for imaging problems such as: classification, object detection, segmentation, ...
- Inverse problems such as denosising, superresolution, restoration can also be solved by CNNs better than model-based approaches
- Why so powerful? CNNs create **nonlinear hierarchies of local features** that create a much more sophisticated prior for natural images than anything hand-crafted

Image dequantization with CNNs

- Goal: a CNN to remove the artifacts introduced by the lossy compression process for hyperspectral images
- To be applied at the ground segment, where computational resource are abundant
- CNN post-processing boosts rate-distortion performance

A residual CNN hyperspectral dequantizer

- CNN estimates the distortion introduced by lossy compression (global input-output residual): easier than directly cleaning up the image
- Inner residual blocks allow a deeper, more powerful network
- Instance normalization layers provide "contrast normalization" to keep outputs well normalized and learn faster
- Input size: $N_1 \times N_C \times 8$ (8 bands at a time are considered)
 - Sliding a window over spectral dimension allows to process images with more bands

A residual CNN hyperspectral dequantizer

- CLIP operation ensures consistent reconstruction
 - The restored pixel values will fall in the same original quantization bins

$$E_{x,y,z}^{\text{CLIP}} = \begin{cases} -\Delta & \text{if } E_{x,y,z} \leq -\Delta \\ \Delta & \text{if } E_{x,y,z} \geq \Delta \\ E_{x,y,z} & \text{otherwise} \end{cases}$$

• Training finds the weight values that minimize the MSE between the reconstructed image and the original

CNN training details

- Optimal performance requires a model trained for:
 - a target **sensor** (e.g., the AVIRIS instrument)
 - a target compression algorithm (e.g., prequantization + lossless CCSDS 123.0-B-2)
 - a target quality point (e.g., a fixed quantization step size)
- Some features learned by the network are **general** and changing one target requires only **finetuning** the trained model (with a small amount of data)

- Training data: 70000 patches of size 32 x 32 x 8 randomly extracted from decoded images for the Cuprite, Jasper and Moffett scenes acquired by AVIRIS
- Test data: Yellowstone scenes (unseen during training, size: 512 x 680 x 224)

Results

123-NL-FULL: CCSDS-123.0-B-2 lossy, full, wide neighbor-oriented mode

123-NL-RED-NARROW: CCSDS-123.0-B-2 lossy, reduced, narrow neighbor-oriented mode **Q + 123-LS**: prequantization + lossless

CCSDS-123.0-B-2 full, wide neighbor-oriented

- Small suboptimality of Q+123-LS with respect to 123-NL-FULL
- Entirely recovered by the CNN at 2 bpp
- Always better than
 123-NL-RED-NARROW even
 without CNN

Results

Mean SNR (dB) for 5 test images

5	123-NL	123-NL + CNN	Q + 123-LS	Q + 123-LS + CNN	123-NL-RED-NARROW	122-POT
1.5 bpp	52.23 ± 0.49	53.38 ± 0.50	49.58 ± 0.69	51.10 ± 0.73	50.85 ± 0.64	53.13 ± 0.54
2.0 bpp	57.60 ± 0.34	58.19 ± 0.36	57.15 ± 0.33	57.65 ± 0.36	56.36 ± 0.33	55.53 ± 0.31
3.0 bpp	64.88 ± 0.34	64.93 ± 0.33	64.80 ± 0.34	64.92 ± 0.35	63.81 ± 0.32	60.09 ± 0.28
4.0 bpp	71.57 ± 0.36	71.55 ± 0.36	71.53 ± 0.37	71.56 ± 0.36	70.49 ± 0.34	65.33 ± 0.36

Correction estimated by the CNN at Q=61 (AVIRIS Yellowstone sc0, band 47, lines 150-300)

Conclusions

- Pixel prequantization + lossless compression with CCSDS-123.0-B-2 + onground CNN has both strong rate-distortion performance and speed
- Equal compression performance to the best prediction mode of the new lossy standard but faster
- Always better than the high-throughput mode of the standard

- CNN can largely recover the suboptimality of out-of-loop prequantization, even at medium-low rates
- Carefully consider this scheme when speed is an issue
- When speed is not an issue, CNN can still provide significant gains to CCSDS-123.0-B-2