ASIC solution for Software Defined Radio regenerative payload

SatixF

European Workshop on On-Board Data Processing (OBDP2019)

27 February 2019

Introduction – "the context"

- LEO HTS, GEO VHTS promise a change in satellite service and economy
 - Higher capacity (300 to 1000 Gbps with very wide bandwidth)
 - Higher throughput
 - Lower bandwidth costs
- A main challenge the satellite industry is facing is how to provide this amount of traffic
 - In the right place
 - Efficiently
 - Economically

Bent Pipe architecture- ground segment

- Bent Pipe architecture gateway link efficiency is limited by the user link budget
- Typical link budget numbers (forward link)
 - 2-2.5 Bps/Hz
 - Es/No ~9.5dB (@ peak)
 - Return link is 1-1.5 bps
- Gateway link in Ka band (2.5 GHz, 2 Pols)
 - 500 GHz (@2bps/Hz avg.)
 - 100 GW links
- In a LEO bent pipe environment a gateway is required in every service area

Gateway versus Satellite CAPEX

The solution -> Decoupling The User and Gateway

		Bent Pipe PL	Regenerative PL
Uplink	EIRPe [dBW]	73	73
	Frequency [GHz]	29.5	29.5
	Free Space Loss [dB]	213.2	213.2
	G/Ts [dB/K]	19.3	19.3
	Es/No	21.5	21.5
Downlink	Average EIRPd	60	NA
	Frequency [GHz]	19.7	
	Free Space Loss [dB]	209.7	
	G/Te [dB/K]	17.5	
	Es/No	9.7	
Total	Es/No	9.4	21.5
Bit/Hz		2.63	5.9

Bent Pipe

Regenerative Payload – Beam Hopping

- Native support of dynamic beam hopping
 - Dynamic allocation of satellite resources
 - Better utilization of the satellite power resources
 - Reduced complexity and cost of the satellite payload
 - Support of wide carriers
 - More efficient power utilization both on ground and on board the satellite

SatixF

If It's so Good ?.....

Future Proofing

- Q: Satellites last 10-15 years, how to keep them current with technology?
- A: (1): Software Defined Radio technology enable making changes in waveforms and parameters
 - (2): Closed Garden vs. Open Garden
 - (3): Constellations life span

Payload Power Consumption

- Q: With traditional FPGA/ASIC it is prohibitive
- A: Modern silicon geometries can process many Gbps in few Watts

Cost

- Q: Designing Space ASICs is costly
- A: Partnership (ESA), Volume (LEO)

Available technology makes it possible

Payload Architecture

- Digital Beam Former
 - Generate multiple simultaneous beams
- Sampled data is being demodulated by the Regenerative Processor
- Decoded information is routed to the destination (GW, User, ISL)
- Data is modulated in the correct Modcod
- Native beam hopping support

SatixFy

SX4000 Regenerative Processor ASIC

- Software Defined Radio Architecture
- Multiple wide band (1GHz) DVB-S2X modulators
- Multiple wide band DVB-S2X demodulators
- Multiple burst RCS2 demodulators
- Beam hopping support (Super-Frame)
- Complete DVB-S2X MODCOD range from 256 APSK to Very Low SNR support
- High speed and low speed interfaces
- DSP and CPU sub-system
- Expansion switch
 - Packet forwarding from/to the modem

Regenerative Payload Processor Advantages

- Gateway and user links decoupling
 - More than 60% of CAPEX and OPEX saving on the ground infrastructure at full deployment
 - Graceful gradual deployment of gateways
- Native support of dynamic beam hopping
 - Better utilization of the satellite resources
 - Reduced complexity and cost of the satellite payload
- Support of wide carriers
 - More efficient power utilization both on ground and on board the satellite
- Routing traffic is done on the payload
 - Route to Inter-satellite links in LEO constellations
 - Single Hop Mesh communication
- Reduced number of required gateways in LEO by routing traffic through constellation
- Simplify gateway link equipment to SCPC links

Summary

- VHTS and LEO HTS constellations require immense amounts of information to be passed to the users
- The gateway becomes a major costs and logistics challenge
- Regenerative payload improves gateway link efficiency and enables smart routing between GW links and ISL, leading to a significant cost saving
- Software Defined Radio provides an answer to future proofing the payload
- Modern silicon technology enables high speed processing with low power
- Rad hardening is required to withstand all orbits radiation exposure
- SatixFy designs SX4000, a Rad Hard, SDR payload regenerative processor